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Lecture Objectives

• Fit logistic regression models using R.
• Understand the output and interpret the coefficients.
• Evaluate the goodness of fit.
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Motivation i

• Earlier in the semester, we discussed linear regression.

• Measure differences in averages between different subgroups.
• For continuous outcome variables.

• Logistic regression is a way to model the relationship
between a binary outcome variable and a set of covariates.

• It’s also used as a basis for prediction modeling in machine
learning.
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Motivation ii
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Main definitions

• Y is a binary outcome variable (i.e. Y = 0 or Y = 1).

logit (E(Y | X1, . . . , Xp)) = β0 + β1X1 + · · · + βpXp.

• Note: logit(t) = log(t/(1 − t)).
• The coefficients βi represent comparisons of log odds for
different values of the covariates (i.e. for different subgroups).

5



Comments i

• If Y is a binary random variable, then E(Y ) = P (Y = 1).
• The odds is the ratio P (Y = 1)/P (Y = 0).

• E.g. if the odds is 2, then Y = 1 is twice as likely than Y = 0.
• In other words, P (Y = 1) = 0.66.

• The logit function takes probabilities (which are between 0
and 1) and transforms them to a real number (from −∞ to
∞)
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Comments ii
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Example i

• Assume we have one covariate X : height in inches.
• The covariate Y : whether someone is a good basketball
player (or not).

• Let’s look at the effect of β on the relationship between X

and P (Y = 1 | X).
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Example ii
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Example i

• Consider the following 2x2 table:

Right-handed Left-handed Total
Male 43 9 52
Female 44 4 48
Total 87 13 100

• Let Y be handedness, and let X be sex.
• Note: The odds for female is (44/48)/(4/48) = 11; the odds
for male is (43/52)/(9/52) = 4.78.
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Example ii

library(tidyverse)
# Create dataset
dataset <- bind_rows(

data.frame(Y = rep(”right”, 43),
X = rep(”male”, 43)),

data.frame(Y = rep(”right”, 44),
X = rep(”female”, 44)),

data.frame(Y = rep(”left”, 9),
X = rep(”male”, 9)),

data.frame(Y = rep(”left”, 4),
X = rep(”female”, 4)))
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Example iii

glimpse(dataset)

## Rows: 100
## Columns: 2
## $ Y <chr> ”right”, ”right”, ”right”, ”right”,
”right”, ”right”, ”right”, ”righ~
## $ X <chr> ”male”, ”male”, ”male”, ”male”,
”male”, ”male”, ”male”, ”male”, ”mal~
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Example iv

# Outcome must be 0 or 1
dataset <- mutate(dataset, Y = as.numeric(Y==”right”))

glm(Y ~ X, data = dataset,
family = ”binomial”)

##
## Call: glm(formula = Y ~ X, family =
”binomial”, data = dataset)
##
## Coefficients:
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Example v

## (Intercept) Xmale
## 2.3979 -0.8339
##
## Degrees of Freedom: 99 Total (i.e. Null); 98
Residual
## Null Deviance: 77.28
## Residual Deviance: 75.45 AIC: 79.45

# Relationship with odds?
log(11)

## [1] 2.397895
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Example vi

log(4.78/11)

## [1] -0.8334547
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Interpreting coeffficients i

• The regression coefficients in logistic regression measure
differences in log odds.

• Or put another way: they measure ratios of odds on the log
scale.

• Very common to take the exponential of coefficients (and
confidence intervals).

• Let’s start with the example of a single binary covariate X .
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Interpreting coeffficients ii

• If X = 0, we have

log P (Y = 1 | X = 0)
P (Y = 0 | X = 0)

= β0.

• In other words, the intercept term β0 corresponds to the
log-odds when all covariates are equal to zero.
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Interpreting coeffficients iii

• Now, let’s look at X = 1

log P (Y = 1 | X = 1)
P (Y = 0 | X = 1)

= β0 + β1.

• Therefore, β1 is the difference in log-odds between X = 1
and X = 0.

• Using logarithm rules, the difference in log-odds is the same
as the log of the odds ratio.
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Exercise

The dataset case2001 from the Sleuth3 package contains
information about members of the Donner party who got trapped
by snow on their way to California.

Using logistic regression, investigate the relationship between age
and survival. Carefully interpret the regression coefficient
estimates. Is the association statistically significant?
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Solution i

library(Sleuth3)
library(tidyverse)

# First transform outcome to 0/1
dataset <- mutate(case2001,

Y = as.numeric(Status == ”Died”))

fit <- glm(Y ~ Age, data = dataset,
family = ”binomial”)
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Solution ii

coef(fit)

## (Intercept) Age
## -1.81851831 0.06647028

• We can’t interpret the intercept, as it would correspond to age
0.

• The coefficient for age is 0.07, which means for two groups
whose age differ by 1 year, the log odds differ by 0.07.

• Alternatively, the odds ratio is exp(0.07) = 1.07.
• Sometimes you’ll see “odds increased by 7%”.
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Solution iii

confint(fit)

## 2.5 % 97.5 %
## (Intercept) -3.99016010 0.005987258
## Age 0.01016096 0.139737905

exp(confint(fit))

## 2.5 % 97.5 %
## (Intercept) 0.01849675 1.006005
## Age 1.01021276 1.149972
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Assumptions

Logistic regression has less assumptions than linear regression.

1. Validity (with respect to the research question).
2. Representativeness (of the data with respect to the
population).

3. Additivity and linearity.
4. (Conditional) Independence of the outcomes.

Note: There is only one possible distribution for binary outcomes,
i.e. Bernoulli. As a consequence, we always have heteroscedasticity.
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Diagnostic plots i

• Diagnostic plots are trickier with logistic regression because
the data is discrete.

• And therefore the residuals are also discrete.

• One useful solution: bin the outcomes/residuals.
• Bin observations with similar fitted values.
• Take the average of residuals and fitted values.
• Plot the averages against one another.

• As residual plots in linear regression, we are looking for
random pattern around horizontal line.

• Note: There is a balance between enough bins to see patterns
and enough observations by bins to have stable averages.
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Example i

• We will use data on Duchenne Muscular Dystrophy (DMD).
• Can be downloaded from https:
//biostat.app.vumc.org/wiki/Main/DataSets

• Goal of the study was to develop a screening program for
female relatives of boys with DMD.

• Outcome: Carrier status
• Covariates: serum markers; creatine kinase (ck), hemopexin
(h), pyruvate kinase (pk) and lactate dehydroginase (ld).
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Example ii

library(tidyverse)
# Import dataset into R
data_dmd <- read_csv(”dmd.csv”)

## Warning: Missing column names filled in: 'X1' [1]

# Remove rows with missing values
data_dmd <- na.omit(data_dmd)

model <- glm(carrier ~ ck + h, data = data_dmd,
family = ”binomial”)

confint(model)
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Example iii

## 2.5 % 97.5 %
## (Intercept) -20.76823776 -10.43024757
## ck 0.04058575 0.08519017
## h 0.07813791 0.17837069

library(broom)
# Plot residuals and probabilities (no binning)
augment(model, type.predict = ”response”) %>%

ggplot(aes(x = .fitted, y = .resid)) +
geom_point() +
geom_hline(yintercept = 0,

linetype = ”dashed”)
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Example iv
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Example v

# We will use the performance package
library(performance)

# By default: residuals vs fitted probs
# sqrt(n) bins (~14 bins)
binned_residuals(model)

## Warning: Probably bad model fit. Only about
71% of the residuals are inside the error bounds.
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Example vi

−0.2

−0.1

0.0

0.1

0.2

0% 25% 50% 75% 100%
Estimated Probability of carrier

A
ve

ra
ge

 r
es

id
ua

l

Within error bounds

no

yes

30



Example vii

# Use 'term' to plot against covariate
binned_residuals(model, term = ”ck”)

## Ok: About 100% of the residuals are inside the
error bounds.
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Example viii
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Example ix

binned_residuals(model, term = ”h”)

## Warning: About 93% of the residuals are inside
the error bounds (~95% or higher would be good).
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Example x
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Example xi

• We have evidence of poor model fit (from binned residuals vs
fitted probabilities).

• But the evidence is weak.

• It may be driven by non-linearity of the effect of h on the
log-odds.

• Or it could be driven by a missing covariate.
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Other considerations i

• Calibration: Are the estimated probabilities close to empirical
probabilities?

• Hosmer-Lemeshow, Brier score

• Discrimination: Are cases more likely to be given large scores
(or large probabilities) than non-cases?

• Area under the ROC curve (AUC), Percentage of Correct
Predictions (PCP)

• Note: the AUC is not a very sensitive measure of model
performance.

36



Other considerations ii

performance_hosmer(model)

## # Hosmer-Lemeshow Goodness-of-Fit Test
##
## Chi-squared: 3.305
## df: 8
## p-value: 0.914
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Other considerations iii

performance_score(model) # Quadratic = Brier

## # Proper Scoring Rules
##
## logarithmic: -Inf
## quadratic: 8.1783
## spherical: 0.0280

performance_roc(model)

## AUC: 92.73%
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performance_pcp(model)

## # Percentage of Correct Predictions from
Logistic Regression Model
##
## Full model: 81.53% [76.07% - 86.99%]
## Null model: 54.78% [47.78% - 61.79%]
##
## # Likelihood-Ratio-Test
##
## Chi-squared: 133.685
## p-value: 0.000
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Summary

• Logistic regression is an extension of linear regression for
binary outcomes.

• Easily extended to any binomial outcome.

• Instead of measuring differences in means, regression
coefficients measure differences in log-odds.

• But β = 0 still corresponds to no association!
• Residual analysis is more complicated.

• Key: Binned residuals.

• As a prediction model, logistic regression is surprisingly
powerful.

• Neural networks can be seen as a generalization.
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