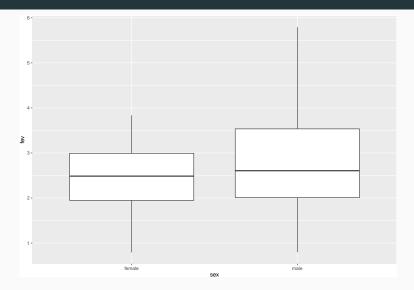
More Examples

Max Turgeon

SCI 2000-Introduction to Data Science

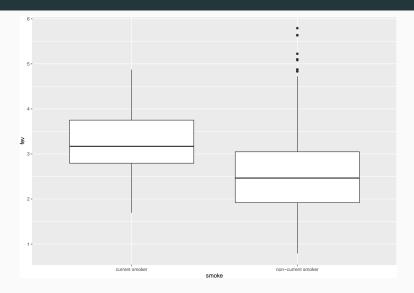
- We will use data on Forced Expiratory Volume (FEV) in children age 3 to 19 from East Boston recorded during the 1970s.
 - Can be downloaded from https://hbiostat.org/data/, but I also added a copy on UM Learn.
- The dataset contains information on age, height, sex, and smoking status.
- Outcome: FEV

```
library(tidyverse)
# Import dataset into R
data_fev <- read_csv("FEV.csv")
glimpse(data_fev, width = 50) # So it fits the slide</pre>
```


- ## Rows: 654
- ## Columns: 6
- ## \$ id <dbl> 301, 451, 501, 642, 901, 1701, 17~
- ## \$ age <dbl> 9, 8, 7, 9, 9, 8, 6, 6, 8, 9, 6, ~
- ## \$ fev <dbl> 1.708, 1.724, 1.720, 1.558, 1.895~
- ## \$ height <dbl> 57.0, 67.5, 54.5, 53.0, 57.0,

```
61.~
```

```
## $ sex <chr> "female", "female", "female", "ma~
## $ smoke <chr> "non-current smoker",
"non-curren~
```


```
# Explore data
ggplot(data_fev, aes(x = sex, y = fev)) +
geom_boxplot()
```

Explore data iv

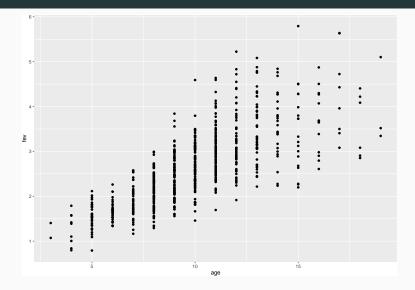
ggplot(data_fev, aes(x = smoke, y = fev)) + geom_boxplot()

Explore data vi

Explore data vii

```
# Smokers have higher FEV??
fit <- lm(fev ~ smoke, data = data_fev)
coef(fit)</pre>
```

(Intercept) smokenon-current smoker ## 3.2768615 -0.7107189


confint(fit)

2.5 % 97.5 %
(Intercept) 3.0719861 3.4817370
smokenon-current smoker -0.9266033 -0.4948346

• Non-smokers have, on average, an FEV measure that is 0.7 lower than smokers... What can be going on?


```
# Look at FEV vs age and height
ggplot(data_fev, aes(x = age, y = fev)) +
geom_point()
```

Explore data ix

ggplot(data_fev, aes(x = height, y = fev)) + geom_point()

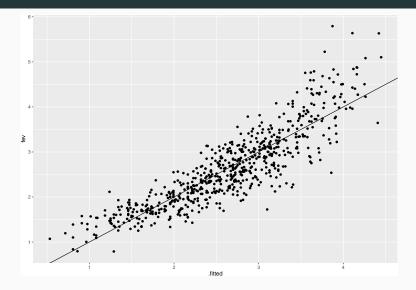
Explore data xi

- The association between FEV and smoking status is **spurious**: it looks like it is driven by the fact that:
 - Older children are taller, have larger lungs, and therefore higher FEV.
 - Older children are more likely to be smokers.
- We also say that age and height are **confounders** for the association between FEV and smoking status.

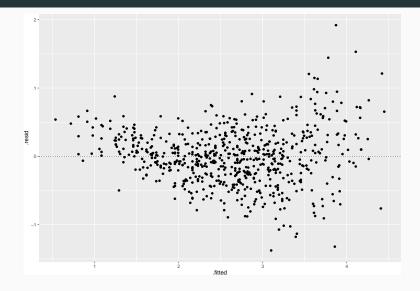
Fit a linear model i

- The idea is that we are comparing older and younger children together, thus creating this spurious association.
 - What if we only compared children of the same age?
- Linear regression actually allows us to **adjust** for the effect of age and height on FEV.

coef(model)


- ## (Intercept) smokenon-current smoker sexmale
- ## -4.54422029 0.08724639 0.15710293
- ## age height
- ## 0.06550932 0.10419943

confint(model)


##			2.5 %	97.5 %
##	(Intercept)		-4.99987259	-4.08856799
##	smokenon-current s	smoker	-0.02910535	0.20359813
##	sexmale		0.09189669	0.22230917
##	age		0.04687736	0.08414129
##	height		0.09485705	0.11354180

- Non-smokers have, on average, an FEV measure that is 0.08 *higher* than smokers, when adjusting for age, height and sex.
 - And it's no longer significant (0 is in the confidence interval)

Residual analysis ii

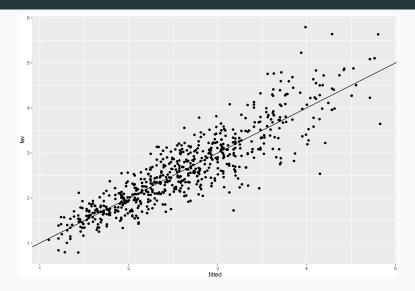
Residual analysis v

Residual analysis vi

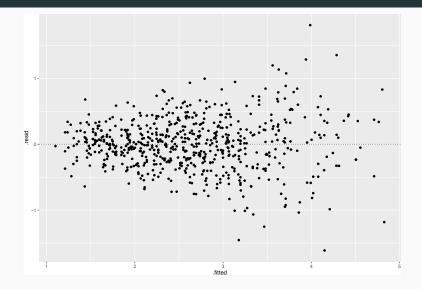
- We found evidence that additivity/linearity is not met.
 - Outcome vs fitted plot.
 - Given our data visualizations, it is likely that relationship between FEV and height is nonlinear.
- We found evidence of unequal variance.
 - Residual vs fitted values: higher variance with larger fitted values.
- How can we use residual analysis to decide how we could improve the model?

coef(model2)

- ## (Intercept) smokenon-current smoker sexmale
- ## 6.761367559 0.133211169 0.094535151
- ## age height I(height^2)
- ## 0.069464619 -0.274234148 0.003125062


confint(model2)

- 2.5 % ## 97.5 %
- ## (Intercept)
- smokenon-current smoker ##
- ## sexmale
- ## age
- height ##
- ## I(height^2)


- 9.696403187 3.826331931
- 0.021072270 0.245350068
- 0.030007679 0.159062623
- 0.051578126 0.087351111
- -0.371797141 -0.176671155
 - 0.002322798 0,003927326

- Non-smokers have, on average, an FEV measure that is 0.13 *higher* than smokers, when adjusting for age, height and sex.
 - And now it's back to being significant

Residual analysis redux ii

Residual analysis redux iv

We still have evidence of unequal variance, but at least additivity/linearity now seem to hold!

```
# Let's use robust standard errors
library(lmtest)
library(sandwich)
coefci(model2, vcov. = vcovHC(model2))
```

Residual analysis redux vi

##	2.5 %	97.5 %
## (Intercept)	3.659722511	9.863012607
<pre>## smokenon-current smoker</pre>	-0.018764668	0.285187006
## sexmale	0.031332609	0.157737694
## age	0.049814635	0.089114603
## height	-0.381834166	-0.166634130
## I(height^2)	0.002210479	0.004039645

- We still have the same interpretation for our regression coefficient:
 - Non-smokers have, on average, an FEV measure that is 0.13 *higher* than smokers, when adjusting for age, height and sex.
- With the robust standard errors, the confidence interval is wider, and so the association between FEV and smoking status (accounting for age, height and sex) is no longer significant.
- Because we are now confident our assumptions hold, the right conclusion from our analysis is the one based on the last model.
 - Quadratic term for height
 - Robust standard errors