Mutating Joins

Max Turgeon

SCI 2000-Introduction to Data Science

Lecture Objectives

- Understand the difference between the different types of mutating joins
- \cdot Be able to choose and select the appropriate mutating join

Motivation

- For the first part of the course, we focused on the *data* analysis part of data science.
 - It probably felt like a sped-up version of STAT 1150
- The datasets we analyzed were provided either as part of packages, or as a single CSV file.
- In the second part of the course, we will discuss some strategies for collecting and combining datasets.

Data science life cycle

Source: https://r4ds.had.co.nz/introduction.html

Relational data i

- So far we've looked at data that fits neatly into a data.frame.
 - Each row is an observation, and for each observation we collected the same variables.
- This is not the only way to store data. Let's look at an example: university course enrollment data.
 - For every student we need to collect personal information.
 - · For every course we need to collect specific information.
- Clearly these datasets should be separate; you can think of them as two different data.frames.
- **Question**: How should we store information about which courses students are taking?

Relational data ii

- Should we add the name of courses to the student data.frame as new variables? How many variables should we create?
- Should we add the name of students to the course data.frame as new variables? How many variables should we create?
- A better solution: Create a new dataset, where each row corresponds to a pair (student, course).
- Why does this work? Each student has a unique identifier, and so does each course.

Relational data iii

- · To create a class list:
 - Filter the (student, course) data.frame to only keep pairs for a given course.
 - Look up which students appear in the filtered dataset
 - Keep relevant personal information (e.g. student number, major, degree)
- The process of "looking up" is called a **mutating join**.

Example i

- This dataset is separated into two CSV files:
 - · One contains a list of 2,410 US craft beers
 - · The other contains data on 510 US breweries
- The beers and breweries datasets have a variable in common, called brewery_id.

```
library(tidyverse)

df_beers <- read_csv("beers.csv")

df_breweries <- read_csv("breweries.csv")

glimpse(df_beers)</pre>
```

Example ii

```
## Rows: 2,410
## Columns: 7
## $ abv <dbl> 0.050, 0.066, 0.071, 0.090, 0~
## $ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, NA,
## $ id <dbl> 1436, 2265, 2264, 2263, 2262,~
## $ name <chr> "Pub Beer", "Devil's Cup", "R~
## $ style <chr> "American Pale Lager", "Ameri~
## $ brewery_id <dbl> 408, 177, 177, 177, 177,
177.~
## $ ounces <dbl> 12, 12, 12, 12, 12, 12, 1~
```

Example iii

```
glimpse(df_breweries)
```

```
## Rows: 558
## Columns: 4
## $ brewery_id <dbl> 0, 1, 2, 3, 4, 5, 6, 7, 8,
9,~
## $ name <chr> "NorthGate Brewing", "Against~
## $ city <chr> "Minneapolis", "Louisville", ~
## $ state <chr> "MN", "KY", "MA", "CA", "CA",~
```

Mutating joins

- Mutating joins create a new dataset by combining two datasets and respecting their relationship.
 - This relationship is encoded by a common variable (or set of variables), often a unique identifier.
- · The main idea is as follows:
 - · Take a row from the first dataset
 - · Find a matching row in the second dataset
 - · Create a new row by concatenating the two rows
- The different types of mutating joins differ in how they handle cases with no matches.

Inner join

• In inner joins, we only create a new row if we can match rows from both datasets.

Example i

Example ii

```
## Rows: 2,410
## Columns: 10
## $ abv <dbl> 0.050, 0.066, 0.071, 0.090, 0~
## $ ibu <dbl> NA. NA. NA. NA. NA. NA. NA. NA. NA.
## $ id <dbl> 1436, 2265, 2264, 2263, 2262,~
## $ name.x <chr> "Pub Beer", "Devil's Cup", "R~
## $ style <chr> "American Pale Lager", "Ameri~
## $ brewery id <dbl> 408, 177, 177, 177, 177,
177,~
## $ ounces <dbl> 12, 12, 12, 12, 12, 12, 1~
## $ name.y <chr> "10 Barrel Brewing Company", ~
## $ city <chr> "Bend", "Gary", "Gary", "Gary~
```

Example iii

```
## $ state <chr> "OR", "IN", "IN", "IN", "IN", ~
# dataset and df beers have the same # of rows
nrow(dataset) == nrow(df beers)
## [1] TRUE
# dataset has one less than the sum of # cols
c(ncol(dataset), ncol(df beers), ncol(df breweries))
## [1] 10 7 4
```

Exercise

Find the state with the highest average of alcohol by volume (abv) per beers.

Solution i

 Now that the datasets are joined, we can use group_by and summarise.

```
dataset %>%
  group_by(state) %>%
  summarise(avg_abv = mean(abv)) %>%
  filter(avg_abv == max(avg_abv))

## # A tibble: 0 x 2
## # ... with 2 variables: state <chr>, avg_abv
<dbl>
```

Solution ii

```
# What went wrong?
# Let's look at the data
dataset %>%
  filter(is.na(abv)) %>%
  glimpse
```

```
## Rows: 62
## Columns: 10
## $ abv <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA
## $ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA
## $ id <dbl> 1541, 1025, 2490, 2489, 2488,~
```

Solution iii

```
## $ name.x <chr> "Double Play Pilsner", "N Str~
## $ style <chr> "American Pilsner", "American~
## $ brewery_id <dbl> 380, 380, 77, 77, 77, 77,
10,~
## $ ounces <dbl> 12, 12, 12, 12, 12, 12, 16, 1~
## $ name.y <chr> "Blue Blood Brewing Company",~
## $ city <chr> "Lincoln", "Lincoln", "Austin~
## $ state <chr> "NE", "NE", "TX", "TX", "TX",~
```

Solution iv

3 AR 0.052

```
# NA in abv trickles down to the average
dataset %>%
 group by(state) %>%
 summarise(avg_abv = mean(abv))
## # A tibble: 51 x 2
## state avg_abv
## * <chr> <dbl>
## 1 AK 0.0556
## 2 AL 0.062
```

Solution v

```
##
    4 AZ
            NA
##
    5 CA
            NA
##
    6 CO
            NA
##
    7 CT
            0.0611
##
    8 DC
           0.0656
    9 DE
##
            NA
## 10 FL
            NA
## # ... with 41 more rows
```

Solution vi

```
# Solution: na.rm = TRUE in mean
dataset %>%
  group_by(state) %>%
  summarise(avg_abv = mean(abv, na.rm = TRUE)) %>%
  filter(avg_abv == max(avg_abv))
```

```
## # A tibble: 1 x 2
## state avg_abv
## <chr> <dbl>
## 1 NV 0.0669
```

Left/right join i

- But what if we want to keep rows from a dataset that don't have a matching row in the other dataset?
- Left and right (outer) joins will do just that and replace the non-matching row with NAs.
- Left and right refer to the dataset from which we want to keep rows.
 - · left_join(x, y) will keep rows of x
 - right_join(x, y) will keep rows of y

Left/right join ii

Example i

```
library(nycflights13)

# Information about flights
glimpse(flights)
```

```
## Rows: 336,776
## Columns: 19
## $ year <int> 2013, 2013, 2013, 2013, 2~
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ dep_time <int> 517, 533, 542, 544, 554, ~
```

Example ii

```
## $ sched dep time <int> 515, 529, 540, 545,
600, ~
## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
## $ arr time <int> 830, 850, 923, 1004, 812,~
## $ sched arr time <int> 819, 830, 850, 1022,
837.~
## $ arr delay <dbl> 11, 20, 33, -18, -25, 12,~
## $ carrier <chr> "UA", "UA", "AA", "B6", "~
## $ flight <int> 1545, 1714, 1141, 725, 46~
## $ tailnum <chr> "N14228", "N24211", "N619~
## $ origin <chr> "EWR", "LGA", "JFK", "JFK~
## $ dest <chr> "IAH", "IAH", "MIA", "BQN~
```

Example iii

```
## $ air_time <dbl> 227, 227, 160, 183, 116, ~
## $ distance <dbl> 1400, 1416, 1089, 1576, 7~
## $ hour <dbl> 5, 5, 5, 6, 5, 6, 6, 6, 6~
## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0,~
## $ time_hour <dttm> 2013-01-01 05:00:00, 201~
```

```
# Information about airplanes
glimpse(planes)
```

Example iv

```
## Rows: 3,322
## Columns: 9
## $ tailnum <chr> "N10156", "N102UW", "N103US~
## $ year <int> 2004, 1998, 1999, 1999, 200~
## $ type <chr> "Fixed wing multi engine", ~
## $ manufacturer <chr> "EMBRAER", "AIRBUS
TNDUSTRT~
## $ model <chr> "EMB-145XR", "A320-214", "A~
## $ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, ~
## $ seats <int> 55, 182, 182, 182, 55, 182,~
## $ speed <int> NA, NA, NA, NA, NA, NA, NA, NA,~
## $ engine <chr> "Turbo-fan", "Turbo-fan", "~
```

Example v

```
# How many flights? How many planes?
c(nrow(flights), nrow(planes))
## [1] 336776 3322
# How many flights have matching plane?
inner join(flights, planes, by = "tailnum") %>%
  nrow
## [1] 284170
```

Example vi

```
# With left_join, we keep all flights
left_join(flights, planes, by = "tailnum") %>%
  glimpse
```

```
## Rows: 336,776
## Columns: 27
## $ year.x <int> 2013, 2013, 2013, 2013, 2~
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ dep_time <int> 517, 533, 542, 544, 554, ~
## $ sched_dep_time <int> 515, 529, 540, 545,
```

Example vii

```
600, ~
## $ dep delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
## $ arr time <int> 830, 850, 923, 1004, 812,~
## $ sched arr time <int> 819, 830, 850, 1022,
837.~
## $ arr delay <dbl> 11, 20, 33, -18, -25, 12,~
## $ carrier <chr> "UA", "UA", "AA", "B6". "~
## $ flight <int> 1545, 1714, 1141, 725, 46~
## $ tailnum <chr> "N14228", "N24211", "N619~
## $ origin <chr> "EWR", "LGA", "JFK", "JFK~
## $ dest <chr> "IAH", "IAH", "MIA", "BQN~
## $ air time <dbl> 227, 227, 160, 183, 116, ~
```

Example viii

```
## $ distance <dbl> 1400, 1416, 1089, 1576, 7~
## $ hour <dbl> 5, 5, 5, 6, 5, 6, 6, 6~
## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0,~
## $ time hour <dttm> 2013-01-01 05:00:00, 201~
## $ year.y <int> 1999, 1998, 1990, 2012, 1~
## $ type <chr> "Fixed wing multi engine"~
## $ manufacturer <chr> "BOEING", "BOEING",
"BOFT~
## $ model <chr> "737-824", "737-824", "75~
## $ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2~
## $ seats <int> 149, 149, 178, 200, 178, ~
## $ speed <int> NA, NA, NA, NA, NA, NA, NA,
```

Example ix

```
## $ engine <chr> "Turbo-fan", "Turbo-fan",~
```

Full join

 The full join allows us to keep unmatched rows from both datasets.

Exercise

The flights dataset contains information about departure and arrival delays (dep_delay and arr_delay). Compute the average delays for each manufacturing year (i.e. the year the plane was manufactured). Plot the relationship between these two quantities. Do you see any evidence of an association?

Solution i

Solution ii

```
# Next group by year and summarise
data_avg <- dataset %>%
  group_by(year) %>%
  summarise(avg_delay = mean(tot_delay, na.rm = TRUE))
## Error: Must group by variables found in `.data`.
## * Column `year` is not found.
# What happened?
# Both flights and planes have a variable year
# year.y refers to the one from planes
names(dataset)
```

Solution iii

```
## [1] "year.x" "month" "day" "dep_time"
## [5] "sched_dep_time" "dep_delay" "arr_time"
"sched_arr_time"
## [9] "arr_delay" "carrier" "flight" "tailnum"
## [13] "origin" "dest" "air_time" "distance"
## [17] "hour" "minute" "time_hour" "year.y"
## [21] "type" "manufacturer" "model" "engines"
## [25] "seats" "speed" "engine" "tot_delay"
```

Solution iv

```
# Try again
data_avg <- dataset %>%
  group_by(year.y) %>%
  summarise(avg_delay = mean(tot_delay, na.rm = TRUE))
data_avg %>%
 ggplot(aes(x = year.y,
             y = avg_delay)) +
  geom point()
```

Solution v

Summary

- · Not all data is neatly packaged into CSV files.
- · Often the data we need is spread over multiple datasets.
- If these datasets have a matching variable, we can create a new dataset with matching rows using mutating joins.
- Choosing between an inner join, left/right join or full join depends on what we want to do with unmatched rows.
 - Do we keep all of them? Only those from one of the two datasets?