Mutating Joins

Max Turgeon

SCI 2000~Introduction to Data Science

Lecture Objectives

- Understand the difference between the different types of
mutating joins
- Be able to choose and select the appropriate mutating join

- For the first part of the course, we focused on the data
analysis part of data science.
- It probably felt like a sped-up version of STAT 1150
- The datasets we analyzed were provided either as part of
packages, or as a single CSV file.
- In the second part of the course, we will discuss some
strategies for collecting and combining datasets.

Data science life cycle

Visualise

Import — Tidy — Transform) —— Communicate

Understand

Program

Source: https://r4ds.had.co.nz/introduction.html

https://r4ds.had.co.nz/introduction.html

Relational data i

- So far we've looked at data that fits neatly into a data. frame.
- Each row is an observation, and for each observation we
collected the same variables.
- This is not the only way to store data. Let’s look at an
example: university course enrollment data.
- For every student we need to collect personal information.
- For every course we need to collect specific information.
- Clearly these datasets should be separate; you can think of
them as two different data. frames.
- Question: How should we store information about which
courses students are taking?

Relational data ii

- Should we add the name of courses to the student
data.frame as new variables? How many variables should
we create?

- Should we add the name of students to the course
data.frame as new variables? How many variables should
we create?

- A better solution: Create a new dataset, where each row
corresponds to a pair (student, course).

- Why does this work? Each student has a unique identifier, and

so does each course.

Relational data iii

- To create a class list:
- Filter the (student, course) data. frame to only keep pairs for
a given course.
- Look up which students appear in the filtered dataset
- Keep relevant personal information (e.g. student number,
major, degree)

- The process of “looking up” is called a mutating join.

- This dataset is separated into two CSV files:

- One contains a list of 2,410 US craft beers

- The other contains data on 510 US breweries

- The beers and breweries datasets have a variable in common,
called brewery_id.

library(tidyverse)

df_beers <- read_csv(”beers.csv”)

df_breweries <- read_csv(”breweries.csv”)

glimpse(df_beers)

Rows: 2,410
Columns: 7

$ abv <dbl> 0.050, 0.066, 0.071, 0.090, O~
$ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
##t $ id <dbl> 1436, 2265, 2264, 2263, 2262,~

$ name <chr> "Pub Beer”, "Devil's Cup”, "R~
$ style <chr> "American Pale Lager”, "Ameri~
#t#t $ brewery_id <dbl> 408, 177, 177, 177, 177,

177,~
$ ounces <dbl> 12, 12, 12, 12, 12, 12, 12, 1~

glimpse(df_breweries)

Rows: 558
Columns: 4
$ brewery_id <dbl> o, 1, 2, 3, 4, 5, 6, 7, 8,

9, ~
$ name <chr> "NorthGate Brewing”, "Against~
$ city <chr> "Minneapolis”, "Louisville”, ~

$ state <chr> "MN”, "KY”, "MA”, "CA”, "CA”,~

Mutating joins

- Mutating joins create a new dataset by combining two
datasets and respecting their relationship.
- This relationship is encoded by a common variable (or set of
variables), often a unique identifier.
- The main idea is as follows:
- Take a row from the first dataset
- Find a matching row in the second dataset
- Create a new row by concatenating the two rows
- The different types of mutating joins differ in how they handle
cases with no matches.

"

Inner join

Ininner joins, we only create a new row if we can match rows

from both datasets.

SO
éo é% 1|x1(yl
%‘W& A

library(tidyverse)

dataset <- inner_join(df_beers,

df _breweries,

by = "brewery_id")
glimpse(dataset)

Rows: 2,410
Columns: 10
$ abv <dbl> 0.050, 0.066, 0.071, 0.090, O~
$ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
$ id <dbl> 1436, 2265, 2264, 2263, 2262,~

$ name.x <chr> "Pub Beer”, "Devil's Cup”, "R~
$ style <chr> "American Pale Lager”, "Ameri~
$ brewery_id <dbl> 408, 177, 177, 177, 177,
177

$ ounces <dbl> 12, 12, 12, 12, 12, 12, 12, 1~
$ name.y <chr> "10 Barrel Brewing Company”, ~
$ city <chr> "Bend”, "Gary”, "Gary”, "Gary~

14

$ state <chr> "OR”, "IN”, "IN”, "IN”, "IN",~

dataset and df_beers have the same # of rows
nrow(dataset) == nrow(df_beers)

[1] TRUE

dataset has one less than the sum of # cols
c(ncol(dataset), ncol(df_beers), ncol(df_breweries))

[1] 10 7 4

Exercise

Find the state with the highest average of alcohol by volume (abv)
per beers.

- Now that the datasets are joined, we can use group_by and
summarise.

dataset %>%
group_by(state) %>%
summarise(avg_abv = mean(abv)) %>%
filter(avg_abv == max(avg_abv))

A tibble: 0 x 2

... with 2 variables: state <chr>, avg_abv
<dbl>

What went wrong?

Let's look at the data

dataset %>%
filter(is.na(abv)) %>%
glimpse

Rows: 62

Columns: 10

$ abv <dbl> NA, NA, NA, NA, NA, NA, NA, N~
$ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
$ id <dbl> 1541, 1025, 2490, 2489, 2488,~

#Ht $
#Ht $

name.x <chr> "Double Play Pilsner”, "N Str~
style <chr> "American Pilsner”, "American~
brewery_id <dbl> 380, 380, 77, 77, 77, 77,

ounces <dbl> 12, 12, 12, 12, 12, 12, 16, 1~
name.y <chr> "Blue Blood Brewing Company"”,~
city <chr> "Lincoln”, "Lincoln”, "Austin~
state <chr> "NE”, "NE”, "TX"”, "TX", "TX",~

19

‘IIHHIHHHHIIHIII

NA in abv trickles down to the average
dataset %>%

group_by(state) %>%

summarise(avg_abv = mean(abv))

A tibble: 51 x 2
#it state avg_abv
* <chr> <dbl>

#t 1 AK 0.0556
#t 2 AL 0.062
3 AR 0.052

20

‘IIiHIHHHHHI|II

#t 4 AZ NA
#tt 5 CA NA
#t 6 CO NA
#t 7 CT 0.0611
8 DC 0.0656
##t 9 DE NA

10 FL NA
##t # ... with 41 more rows

21

‘IIHHIHHiHiIiiII

Solution: na.rm = TRUE in mean

dataset %>%
group_by(state) %>%
summarise(avg_abv = mean(abv, na.rm = TRUE)) %>%
filter(avg_abv == max(avg_abv))

##t # A tibble: 1 x 2
state avg_abv
#it <chr> <dbl>
1 NV 0.0669

22

Left/right join i

- But what if we want to keep rows from a dataset that don't
have a matching row in the other dataset?
- Left and right (outer) joins will do just that and replace the
non-matching row with NAs.
- Left and right refer to the dataset from which we want to keep
rows.
- left_join(x, y) will keep rows of x
- right_join(x, y) will keep rows of y

23

Left/right join ii

° 0% 1|(x1|yl
O D EAE
%&& 3| %3 [NA
ER >
RIS ks

library(nycflights13)

Information about flights
glimpse(flights)

Rows: 336,776

Columns: 19

$ year <int> 2013, 2013, 2013, 2013, 2~

$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

$ dep_time <int> 517, 533, 542, 544, 554, ~

25

$ sched_dep_time <int> 515, 529, 540, 545,
600, ~

$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
$ arr_time <int> 830, 850, 923, 1004, 812,~
$ sched arr_time <int> 819, 830, 850, 1022,

837,~

$ arr_delay <dbl> 11, 20, 33, -18, -25, 12,~
$ carrier <chr> "UA”, "UA”, "AA”, "B6”, "~
##t $ flight <int> 1545, 1714, 1141, 725, 46~

$ tailnum <chr> "N14228”, "N24211”, "N619~
#t#t $ origin <chr> "EWR", "LGA", "JFK”, "JFK~

$ dest <chr> "IAH”, "IAH”, "MIA”, "BQN~

26

$ air_time <dbl> 227, 227, 160, 183, 116, ~
¢ distance <dbl> 1400, 1416, 1089, 1576, 7~
$ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6~

$ minute <dbl> 15, 29, 40, 45, 0, 58, 0,~

$ time_hour <dttm> 2013-01-01 05:00:00, 201~

Information about airplanes

glimpse(planes)

27

IIHHHHHHHHIHIII

Rows: 3,322

Columns: 9

$ tailnum <chr> ”"N10156”, "N102UW”, "N103US~

$ year <int> 2004, 1998, 1999, 1999, 200~

$ type <chr> "Fixed wing multi engine”, ~

$ manufacturer <chr> "EMBRAER”, "AIRBUS

INDUSTRI~

$ model <chr> "EMB-145XR”, "A320-214", "A~

$ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, ~

$ seats <int> 55, 182, 182, 182, 55, 182,~

$ speed <int> NA, NA, NA, NA, NA, NA, NA,~
$

$ engine <chr> "Turbo-fan”, "Turbo-fan”, "~

28

IIEHHHiHHiII

How many flights? How many planes?
c(nrow(flights), nrow(planes))

[1] 336776 3322

How many flights have matching plane?
inner_join(flights, planes, by = "tailnum”) %>%
nrow

[1] 284170

29

IIEH%HHHHiIHiII

With left_join, we keep all flights
left_join(flights, planes, by = "tailnum”) %>%
glimpse

Rows: 336,776

Columns: 27

$ year.x <int> 2013, 2013, 2013, 2013, 2~
$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

$ dep_time <int> 517, 533, 542, 544, 554, ~
$ sched_dep_time <int> 515, 529, 540, 545,

30

IIEH%iiHHHiIHIiIII

600, ~

$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
$ arr_time <int> 830, 850, 923, 1004, 812,~

$ sched_arr_time <int> 819, 830, 850, 1022,

837,~

#H
#H
#H
#H
#H
i
i

arr_delay <dbl> 11, 20, 33, -18, -25, 12,~
carrier <chr> "UA", "UA", "AA", "B6", "~
flight <int> 1545, 1714, 1141, 725, 46~
tailnum <chr> "N14228", "N24211", "N619~
origin <chr> "EWR”, "LGA", "JFK"”, "JFK~
dest <chr> "IAH"”, "IAH", "MIA”, "BQN~
air_time <dbl> 227, 227, 160, 183, 116, ~

A A A A A A A

31

IIEH%HHHIHIIHiiIII

Hit
Hit
Hit
Hit
Hit
Hit
#t $

©H A A A A A

distance <dbl> 1400, 1416, 1089, 1576, 7~
hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6~
minute <dbl> 15, 29, 40, 45, 0, 58, 0,~
time_hour <dttm> 2013-01-01 05:00:00, 201~
year.y <int> 1999, 1998, 1990, 2012, 1~
type <chr> "Fixed wing multi engine”~
manufacturer <chr> "BOEING”, "BOEING”,

"BOEI~

#t $
#t $
#t $
#t $

model <chr> "737-824", "737-824", "75~
engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2~
seats <int> 149, 149, 178, 200, 178, ~
speed <int> NA, NA, NA, NA, NA, NA, N~

32

IIHHHHHHHHIHIII

$ engine <chr> "Turbo-fan”, "Turbo-fan”,~

138

- The full join allows us to keep unmatched rows from both

datasets.

val_y

x1 [yl
X2 |y2

.huurun—-key

NA [y3

34

Exercise

The flights dataset contains information about departure and
arrival delays (dep_delay and arr_delay). Compute the average
delays for each manufacturing year (i.e. the year the plane was
manufactured). Plot the relationship between these two quantities.
Do you see any evidence of an association?

35

First we combine the two datasets
and create tot_delay variable
Note: Could also use inner_join
dataset <- left_join(flights,
planes,
by = "tailnum”) %>%
mutate(tot_delay = dep_delay + arr_delay)

36

Next group by year and summarise
data_avg <- dataset %>%
group_by(year) %>%
summarise(avg_delay = mean(tot_delay, na.rm = TRUE))

Error: Must group by variables found in ~.data’.
x Column “year is not found.

What happened?
Both flights and planes have a variable year
year.y refers to the one from planes

names(dataset)

37

[1] "year.x” "month” "day” "dep_time”

[5] "sched_dep_time” "dep_delay” "arr_time”
"sched_arr_time”

[9] "arr_delay” "carrier” "flight” "tailnum”
[13] "origin” "dest” "air_time” "distance”
[17] "hour” "minute” "time_hour” "year.y”

[21] "type” "manufacturer” "model” "engines”
[25] "seats” "speed” "engine” "tot_delay”

38

‘IIHHIHHHHIIHIII

Try again
data_avg <- dataset %>%
group_by(year.y) %>%
summarise(avg_delay = mean(tot_delay, na.rm = TRUE))

data_avg %>%
ggplot(aes(x

y
geom_point()

year.y,
avg_delay)) +

39

Solution v

o .o
. .
o
.
20- .o
. . . .
.
o . . e
.
. . .
-
¢ .
.
. .

10- -
g .
3 .
g
H

o-

10~

-20- .
1960 1080 2000

yeary

40

- Not all data is neatly packaged into CSV files.
- Often the data we need is spread over multiple datasets.
- If these datasets have a matching variable, we can create a
new dataset with matching rows using mutating joins.
- Choosing between an inner join, left/right join or full join
depends on what we want to do with unmatched rows.
- Do we keep all of them? Only those from one of the two

datasets?

41

