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Lecture Objectives

- Understand the difference between the different types of
mutating joins
- Be able to choose and select the appropriate mutating join



- For the first part of the course, we focused on the data
analysis part of data science.
- It probably felt like a sped-up version of STAT 1150
- The datasets we analyzed were provided either as part of
packages, or as a single CSV file.
- In the second part of the course, we will discuss some
strategies for collecting and combining datasets.
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Relational data i

- So far we've looked at data that fits neatly into a data. frame.
- Each row is an observation, and for each observation we
collected the same variables.
- This is not the only way to store data. Let’s look at an
example: university course enrollment data.
- For every student we need to collect personal information.
- For every course we need to collect specific information.
- Clearly these datasets should be separate; you can think of
them as two different data. frames.
- Question: How should we store information about which
courses students are taking?



Relational data ii

- Should we add the name of courses to the student
data.frame as new variables? How many variables should
we create?

- Should we add the name of students to the course
data.frame as new variables? How many variables should
we create?

- A better solution: Create a new dataset, where each row
corresponds to a pair (student, course).

- Why does this work? Each student has a unique identifier, and

so does each course.



Relational data iii

- To create a class list:
- Filter the (student, course) data. frame to only keep pairs for
a given course.
- Look up which students appear in the filtered dataset
- Keep relevant personal information (e.g. student number,
major, degree)

- The process of “looking up” is called a mutating join.



- This dataset is separated into two CSV files:

- One contains a list of 2,410 US craft beers

- The other contains data on 510 US breweries

- The beers and breweries datasets have a variable in common,
called brewery_id.

library(tidyverse)

df_beers <- read_csv(”beers.csv”)

df_breweries <- read_csv(”breweries.csv”)

glimpse(df_beers)



## Rows: 2,410
## Columns: 7

## $ abv <dbl> 0.050, 0.066, 0.071, 0.090, O~
## $ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
##t $ id <dbl> 1436, 2265, 2264, 2263, 2262,~

## $ name <chr> "Pub Beer”, "Devil's Cup”, "R~
## $ style <chr> "American Pale Lager”, "Ameri~
#t#t $ brewery_id <dbl> 408, 177, 177, 177, 177,

177,~
## $ ounces <dbl> 12, 12, 12, 12, 12, 12, 12, 1~



glimpse(df_breweries)

## Rows: 558
## Columns: 4
## $ brewery_id <dbl> o, 1, 2, 3, 4, 5, 6, 7, 8,

9, ~
## $ name <chr> "NorthGate Brewing”, "Against~
## $ city <chr> "Minneapolis”, "Louisville”, ~

## $ state <chr> "MN”, "KY”, "MA”, "CA”, "CA”,~



Mutating joins

- Mutating joins create a new dataset by combining two
datasets and respecting their relationship.
- This relationship is encoded by a common variable (or set of
variables), often a unique identifier.
- The main idea is as follows:
- Take a row from the first dataset
- Find a matching row in the second dataset
- Create a new row by concatenating the two rows
- The different types of mutating joins differ in how they handle
cases with no matches.
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Inner join

Ininner joins, we only create a new row if we can match rows

from both datasets.
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library(tidyverse)

dataset <- inner_join(df_beers,

df _breweries,

by = "brewery_id")
glimpse(dataset)



## Rows: 2,410
## Columns: 10
## $ abv <dbl> 0.050, 0.066, 0.071, 0.090, O~
## $ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
## $ id <dbl> 1436, 2265, 2264, 2263, 2262,~

## $ name.x <chr> "Pub Beer”, "Devil's Cup”, "R~
## $ style <chr> "American Pale Lager”, "Ameri~
## $ brewery_id <dbl> 408, 177, 177, 177, 177,
177

## $ ounces <dbl> 12, 12, 12, 12, 12, 12, 12, 1~
## $ name.y <chr> "10 Barrel Brewing Company”, ~
## $ city <chr> "Bend”, "Gary”, "Gary”, "Gary~
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## $ state <chr> "OR”, "IN”, "IN”, "IN”, "IN",~

# dataset and df_beers have the same # of rows
nrow(dataset) == nrow(df_beers)

## [1] TRUE

# dataset has one less than the sum of # cols
c(ncol(dataset), ncol(df_beers), ncol(df_breweries))

## [1] 10 7 4



Exercise

Find the state with the highest average of alcohol by volume (abv)
per beers.



- Now that the datasets are joined, we can use group_by and
summarise.

dataset %>%
group_by(state) %>%
summarise(avg_abv = mean(abv)) %>%
filter(avg_abv == max(avg_abv))

## # A tibble: 0 x 2

## # ... with 2 variables: state <chr>, avg_abv
<dbl>



# What went wrong?

# Let's look at the data

dataset %>%
filter(is.na(abv)) %>%
glimpse

## Rows: 62

## Columns: 10

## $ abv <dbl> NA, NA, NA, NA, NA, NA, NA, N~
## $ ibu <dbl> NA, NA, NA, NA, NA, NA, NA, N~
## $ id <dbl> 1541, 1025, 2490, 2489, 2488,~



#Ht $
#Ht $

name.x <chr> "Double Play Pilsner”, "N Str~
style <chr> "American Pilsner”, "American~
brewery_id <dbl> 380, 380, 77, 77, 77, 77,

ounces <dbl> 12, 12, 12, 12, 12, 12, 16, 1~
name.y <chr> "Blue Blood Brewing Company"”,~
city <chr> "Lincoln”, "Lincoln”, "Austin~
state <chr> "NE”, "NE”, "TX"”, "TX", "TX",~
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# NA in abv trickles down to the average
dataset %>%

group_by(state) %>%

summarise(avg_abv = mean(abv))

## # A tibble: 51 x 2
#it state avg_abv
## * <chr> <dbl>

#t 1 AK 0.0556
#t 2 AL 0.062
## 3 AR 0.052
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#t 4 AZ NA
#tt 5 CA NA
#t 6 CO NA
#t 7 CT 0.0611
## 8 DC 0.0656
##t 9 DE NA

## 10 FL NA
##t # ... with 41 more rows
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# Solution: na.rm = TRUE in mean

dataset %>%
group_by(state) %>%
summarise(avg_abv = mean(abv, na.rm = TRUE)) %>%
filter(avg_abv == max(avg_abv))

##t # A tibble: 1 x 2
# state avg_abv
#it <chr> <dbl>
## 1 NV 0.0669
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Left/right join i

- But what if we want to keep rows from a dataset that don't
have a matching row in the other dataset?
- Left and right (outer) joins will do just that and replace the
non-matching row with NAs.
- Left and right refer to the dataset from which we want to keep
rows.
- left_join(x, y) will keep rows of x
- right_join(x, y) will keep rows of y
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Left/right join ii
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library(nycflights13)

# Information about flights
glimpse(flights)

## Rows: 336,776

## Columns: 19

## $ year <int> 2013, 2013, 2013, 2013, 2~

## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

## $ dep_time <int> 517, 533, 542, 544, 554, ~
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## $ sched_dep_time <int> 515, 529, 540, 545,
600, ~

## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
## $ arr_time <int> 830, 850, 923, 1004, 812,~
## $ sched arr_time <int> 819, 830, 850, 1022,

837,~

## $ arr_delay <dbl> 11, 20, 33, -18, -25, 12,~
## $ carrier <chr> "UA”, "UA”, "AA”, "B6”, "~
##t $ flight <int> 1545, 1714, 1141, 725, 46~

## $ tailnum <chr> "N14228”, "N24211”, "N619~
#t#t $ origin <chr> "EWR", "LGA", "JFK”, "JFK~

## $ dest <chr> "IAH”, "IAH”, "MIA”, "BQN~
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## $ air_time <dbl> 227, 227, 160, 183, 116, ~
## ¢ distance <dbl> 1400, 1416, 1089, 1576, 7~
## $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6~

## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0,~

## $ time_hour <dttm> 2013-01-01 05:00:00, 201~

# Information about airplanes

glimpse(planes)

27



IIHHHHHHHHIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

## Rows: 3,322

## Columns: 9

## $ tailnum <chr> ”"N10156”, "N102UW”, "N103US~

## $ year <int> 2004, 1998, 1999, 1999, 200~

## $ type <chr> "Fixed wing multi engine”, ~

## $ manufacturer <chr> "EMBRAER”, "AIRBUS

INDUSTRI~

## $ model <chr> "EMB-145XR”, "A320-214", "A~

## $ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, ~

## $ seats <int> 55, 182, 182, 182, 55, 182,~

## $ speed <int> NA, NA, NA, NA, NA, NA, NA,~
$

## $ engine <chr> "Turbo-fan”, "Turbo-fan”, "~
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# How many flights? How many planes?
c(nrow(flights), nrow(planes))

## [1] 336776 3322

# How many flights have matching plane?
inner_join(flights, planes, by = "tailnum”) %>%
nrow

## [1] 284170
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# With left_join, we keep all flights
left_join(flights, planes, by = "tailnum”) %>%
glimpse

## Rows: 336,776

## Columns: 27

## $ year.x <int> 2013, 2013, 2013, 2013, 2~
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1~

## $ dep_time <int> 517, 533, 542, 544, 554, ~
## $ sched_dep_time <int> 515, 529, 540, 545,

30



IIEH%iiHHHiIHIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

600, ~

## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, ~
## $ arr_time <int> 830, 850, 923, 1004, 812,~

## $ sched_arr_time <int> 819, 830, 850, 1022,

837,~

#H
#H
#H
#H
#H
i
i

arr_delay <dbl> 11, 20, 33, -18, -25, 12,~
carrier <chr> "UA", "UA", "AA", "B6", "~
flight <int> 1545, 1714, 1141, 725, 46~
tailnum <chr> "N14228", "N24211", "N619~
origin <chr> "EWR”, "LGA", "JFK"”, "JFK~
dest <chr> "IAH"”, "IAH", "MIA”, "BQN~
air_time <dbl> 227, 227, 160, 183, 116, ~

A A A A A A A
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Hit
Hit
Hit
Hit
Hit
Hit
#t $

©H A A A A A

distance <dbl> 1400, 1416, 1089, 1576, 7~
hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6~
minute <dbl> 15, 29, 40, 45, 0, 58, 0,~
time_hour <dttm> 2013-01-01 05:00:00, 201~
year.y <int> 1999, 1998, 1990, 2012, 1~
type <chr> "Fixed wing multi engine”~
manufacturer <chr> "BOEING”, "BOEING”,

"BOEI~

#t $
#t $
#t $
#t $

model <chr> "737-824", "737-824", "75~
engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2~
seats <int> 149, 149, 178, 200, 178, ~
speed <int> NA, NA, NA, NA, NA, NA, N~
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## $ engine <chr> "Turbo-fan”, "Turbo-fan”,~
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- The full join allows us to keep unmatched rows from both

datasets.

val_y
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NA [ y3
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Exercise

The flights dataset contains information about departure and
arrival delays (dep_delay and arr_delay). Compute the average
delays for each manufacturing year (i.e. the year the plane was
manufactured). Plot the relationship between these two quantities.
Do you see any evidence of an association?
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# First we combine the two datasets
# and create tot_delay variable
# Note: Could also use inner_join
dataset <- left_join(flights,
planes,
by = "tailnum”) %>%
mutate(tot_delay = dep_delay + arr_delay)
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# Next group by year and summarise
data_avg <- dataset %>%
group_by(year) %>%
summarise(avg_delay = mean(tot_delay, na.rm = TRUE))

## Error: Must group by variables found in ~.data’.
## x Column “year  is not found.

# What happened?
# Both flights and planes have a variable year
# year.y refers to the one from planes

names(dataset)
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## [1] "year.x” "month” "day” "dep_time”

## [5] "sched_dep_time” "dep_delay” "arr_time”
"sched_arr_time”

## [9] "arr_delay” "carrier” "flight” "tailnum”
## [13] "origin” "dest” "air_time” "distance”
## [17] "hour” "minute” "time_hour” "year.y”

## [21] "type” "manufacturer” "model” "engines”
## [25] "seats” "speed” "engine” "tot_delay”
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# Try again
data_avg <- dataset %>%
group_by(year.y) %>%
summarise(avg_delay = mean(tot_delay, na.rm = TRUE))

data_avg %>%
ggplot(aes(x

y
geom_point()

year.y,
avg_delay)) +
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- Not all data is neatly packaged into CSV files.
- Often the data we need is spread over multiple datasets.
- If these datasets have a matching variable, we can create a
new dataset with matching rows using mutating joins.
- Choosing between an inner join, left/right join or full join
depends on what we want to do with unmatched rows.
- Do we keep all of them? Only those from one of the two

datasets?
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