Regular expressions

Max Turgeon

SCI 2000~Introduction to Data Science

Lecture Objectives

- Understand the definition of regular expressions
- Recognize and use the different metacharacters
- Use regular expressions to filter and edit text data

- As we have seen, data is often encoded using text.
- M/Forminivan/suv/pickup
- When we are lucky, this data is free of errors and coded
exactly the way we need it for data analysis.
- More often than not, there are typos or inconsistencies in the
data that need to be addressed.

Regular expression-Definition

- A regular expression (or regex) is a sequence of characters
that specify a search pattern.
- In other words, a regex is a pattern that we want to find in a
string of text.
- Common applications of regexes include:
- finding observations where a certain word appears
- replacing a string by another one

- splitting a string according to a certain pattern

IIHHHHiHH%iIiIII

library(stringr)

Detect a pattern

str_detect(c(”apple”, "orange”, "pineapple”),
pattern = "apple”)

[1] TRUE FALSE TRUE

Careful: This is case-sensitive
str_detect(c(”Apple”, "Orange”, "Pineapple”),
pattern = "apple”)

IIEH%iiHHH%HIIiIII

[1] FALSE FALSE TRUE

To ignore case
str_detect(c(”Apple”, "Orange”, "Pineapple”),
pattern = regex(”apple”,
ignore_case = TRUE))

[1] TRUE FALSE TRUE

Match one of the patterns
str_detect(c(”color”, "colour”, "coulour”),

pattern = "color|colour”)

IIHHHHHHE%i|II

[1] TRUE TRUE FALSE
Or more compact

str_detect(c(”color”, "colour”, "coulour”),
pattern = "col(olou)r”)

[1] TRUE TRUE FALSE

IIHHHHHHH%iIiII

Replace patterns
str_replace_all(c(”Male”, "male”, "Male”),
pattern = regex("male”,
ignore_case = TRUE),

replacement = "male”)

[1] "male” "male” "male”

IIEH%iiHHH%HIlIII

Split a string using a pattern
str_split(c(”it is a sentence”, "it is another one”),
pattern = 7 ")

[[1]1]

[1] "it” "is” "a" "sentence”
#H

[[2]1]

[1] "it” "is" "another” "one”

- Anchors are special characters (i.e. metacharacters) that can
be used to specify where we want to find a match.
- There are two main anchors:

- “pattern will match any string that starts with pattern
- pattern$ will match any string that ends with pattern

- You can combine them:
- “pattern$ will only match the string pattern

- If you want to match on a metacharacter (e.g. $), you need to
escape it (see example below).

This doesn't work...
str_detect(c(”$15.99”, "$3.75", "1.99%"),
pattern = ""$")

[1] FALSE FALSE FALSE

But this does!
str_detect(c(”$15.99”, "$3.75", "1.99%"),
pattern = ""\\$")

[1] TRUE TRUE FALSE

"

Matching on prices that start or end with dollar sign
Use logical operator
str_detect(c(”$15.99”, "$3.75", "1.99%"),
pattern = ""\\$") |
str_detect(c(”$15.99”, "$3.75", "1.99%"),
pattern = "\\3")

[1] TRUE TRUE TRUE

Or more compact
str_detect(c(”$15.99”, "$3.75", "1.99%"),
pattern = ""\\$/\\$$")

[1] TRUE TRUE TRUE

- Quantifiers are ways to specify how many times a certain
pattern should appear.
- At least once? Exactly three times?
- There are four important metacharacters to remember.

. will match any single character, except a new line.
- ? will match the item on its left at most once.
- % will match the item on its left zero or more times.
-+ will match the item on its left once or more times.

- Key distinction between * and +

- the latter requires at least one match.

14

Revisiting an earlier example
str_detect(c(”color”, "colour”, "coulour”),

pattern = "colou?r”)

[1] TRUE TRUE FALSE
Matching strings that end with a bunch of periods

str_detect(c(”str”, "str.”, "str..”, "str...”),
pattern = "\\.+$")

[1] FALSE TRUE TRUE TRUE

Quantifiers cont’d

- You can also control the number of matches more precisely.

- {n} will match the item on its left exactly n times.

- {n, } will match the item on its left at least n times.

- {n,m} will match the item on its left at least n times, but no
more than m times.

Exercise

Find a regular expression that matches string ending with an
ellipsis (i.e. three dots).

’

str_detect(c(”string.”, "string..”, "string...”),

pattern = "\\.{3}$")

[1] FALSE FALSE TRUE

Be careful: a string with 4 dots will also match

”n

str_detect(”string....”, pattern = "\\.{3}$")

[1] TRUE

Character classes i

- When discussing quantifiers, | used “item on the left” instead
of “character on the left".
- This was intentional: these items could also be character
classes.
- We can create them using square brackets.
- Eg plaolrt will match both part and port.
- Character classes can also be created using sequences.

- [a-z] will match all lower case letters
- [a-zA-Z] will match all lower and upper case letters
- [0-9] will match all ten digits

19

Character classes ii

- There are also built-in character classes:
- \\d matches any digit character (equivalent to [0-91)
- \\'s matches any space character (including tabs, new lines,
etc.)
- \\w matches any word character (equivalent to
[A-Za-z0-9_1)
- \\b matches word boundaries
- Finally, you can negate character classes to get non-matches.
- p["ao]rt matches purt and pert
- The negation of \\d, \\'s, \\w, \\b are \\D, \\S, \\W, \\B

respectively.

20

Split a sentence into words
str_split(”The fox ate a berry.”, "\\b”)

[[1]]
[1] nn "The" ”n ”n ".FOX" ”n ”n "ate" ”n 1 "a" 1 ”n
[10] "berry” ".”

str_split(”"The fox ate a berry.”, "\\s”)

[[1]]
[1] "The" ".FOX" "ate" "a" "berry."

21

Trim white space

str_replace_all(”Is this enough?”,
pattern = "\\s+",
replacement = "7 ")

[1] "Is this enough?”

22

Exercise

Find a regular expression that matches white space at the
beginning and the end of a string.

23

”n

str_replace_all(” Is this enough? ,
pattern = "("\\s+|\\s+$)",
replacement = "")

[1] "Is this enough?”

24

- Regular expressions are patterns that we want to search
within a string.
- Anchors and quantifiers are metacharacters that allow us to
be quite specific about the type of matches we want.
- Remember: to match on a metacharacter literally, you need to
escape it!
- Most modern implementations of regular expressions also
have lookaround operators, which we won't cover. But look it
up if you're interested!

25

library(tidyverse)
library(dslabs)
glimpse(movielens)

Rows: 100,004

Columns: 7

$ movieId <int> 31, 1029, 1061, 1129, 1172,
1263, 1287, 1293, 1339, 1343, 13~

$ title <chr> "Dangerous Minds”, "Dumbo”,
"Sleepers”, "Escape from New Yor~

$ year <int> 1995, 1941, 1996, 1981, 1989,

26

1978, 1959, 1982, 1992, 1991, ~

$ genres <fct> Drama,
Animation|Children|Drama|Musical, Thriller,
Action|Ad~

$ userId <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~

$ rating <dbl> 2.5, 3.0, 3.0, 2.0, 4.0, 2.0,
2.0, 2.0, 3.5, 2.0, 2.5, 1.0, ~

$ timestamp <int> 1260759144, 1260759179,
1260759182, 1260759185, 1260759205, ~

27

How many horror movie reviews
movielens %>%
filter(str_detect(genres, "Horror”)) %>%

nrow()

[1] 6790

28

What proportion are about thrillers?
movielens %>%
mutate(thriller = str_detect(genres,
"Thriller”)) %>%
summarise(prop = mean(thriller))

HHt prop
1 0.2523899

29

What genre is Forrest Gump?
movielens %>%
filter(str_detect(title, "Gump”)) %>%
pull(genres) %>%
unique %>%
str_split(pattern = "\\|")

[[1]]
[1] "Comedy” "Drama” "Romance” "War”

30

Exercise

The dataset reported_heights in the dslabs package contains

self-reported heights in no specific format. Clean up the data by
making all heights comparable.

This is a challenging exercise. Try to do as much as you can.

31

(Partial) solution i

- The first thing to do is to decide which units we will use.
- Looking at the data, it seems that most people reported their
height in inches.
- Therefore, let's use inches as our unit of measurement.
- Next, we need to look at the data and find heights that don't
seem to be in inches.
- For example, some heights are a single digit, which is probably
the height in feet.
- To find these heights, we can use “\\d$ as our regex.

- Once found, we need to convert to an integer and multiply by
12.

32

(Partial) solution ii

library(tidyverse)
library(dslabs)
library(stringr)

reported_heights %>%

filter(str_detect(height, ""\\d$")) %>%
count(height)

138

(Partial) solution iii

height n
Ht 1 0 1
H#t 2 1 3
3 2 1
Het 4 5 4
5 6 19
H## 6 7 1

- We can see some errors already.

- A height of 0 or 1is probably a mistake.
- A height of 2 is either a mistake or 2 meters. We will assume
the latter.

34

(Partial) solution iv

data_cleanl <- reported_heights %>%
filter(!'height %in% c(0, 1)) %>% # Remove mistakes
filter(str_detect(height, ""“\\d$")) %>%
mutate(height_in = if_else(height == "2",
78.75,
12 % as.numeric(height)))
nrow(data_cleanl)

[1] 25

35

(Partial) solution v

- We can look for other patterns by looking at heights that are
not written as one or two digits.

- The regex we want to use is “\\d{1,2}$

reported_heights %>%
filter(!str_detect(height, ""\\d{1,2}$")) %>%
head()

36

(Partial) solution vi

#Hit time_stamp sex height
1 2014-09-02 15:16:28 Male 5' 4"
2 2014-09-02 15:16:31 Female 66.75
3 2014-09-02 15:16:32 Female 5.3
H## 4 2014-09-02 15:16:37 Male 70.5
5 2014-09-02 15:16:37 Female 165cm
H## 6 2014-09-02 15:16:41 Male 511

- For a complete-ish solution, see UM Learn.

37

