Scraping using XPath

Max Turgeon

SCI 2000~Introduction to Data Science

Lecture Objectives

- Scrape data using XPath and understand its basic components
- Compare and contrast CSS selectors and XPath

- Last week, we discussed how to extract data from HTML files.

- We focused on CSS selectors, which is a way to identify which
element we want.

- However, we also saw that sometimes it extracts more
information than we need.

- E.g Tables from Wikipedia all have the same class.

- XPath is a powerful and more precise way of describing a

specific element inside an HTML file

- E.g Italso applies to XML files more generally.

From last week----
library(rvest)
library(tidyverse)

url <- "https://en.wikipedia.org/wiki/World_population”
world_pop_tables <- read_html(url) %>%

html_elements(”table.wikitable”)

length(world_pop_tables)

[1] 13

Notice the single and double quotes!
xpath <- '//div[@id="mw-content-text”]/div[1]/table[4]"
exact_table <- read_html(url) %>%

html_element(xpath = xpath)

library(knitr)

html_table(exact_table) %>%
select(Rank, Country, Population) %>%
kable()

Rank Country Population
1 China 1,407,257,360
2 India 1,375,030,248
3 United States 331,402,425
4 Indonesia 269,603,400
5 Pakistan 220,892,331
6 Brazil 212,925,393
7 Nigeria 206,139,587
8 Bangladesh 170,397,280
9 Russia 146,748,590

—_
(@]

Mexico 127,792,286

XPath—Basic syntax i

- XPath uses path expressions (think “file system”) to select
elements in an HTML document.
- We can specify paths:
- based on element names (e.g. div or p)
- based on element attributes (e.g. class or href)
- based on an element’s relationship to other elements (e.g. p
inside div)
- Let's look at the path we used earlier
- //div[@id="mw-content-text”]/div[1]/table[4]
- You probably recognize some of the elements here (div and
table).

XPath—Basic syntax ii

But what do the other pieces mean?

Document

Root element:

<htrmlz
[
| |
Elerment: Elerment:
<head> =hody=
‘ [l]
Elerment: Attribute: || Elerment: Elernent:
<title= “href” 3= =hilz
Text: Text: Text:
“ My title” “My link” “My header”

XPath—Basic syntax iii

Root element: | parentMode

=htrl=
firstChild :
Elﬁ.;”aed”:f' childiodes
= | to <html=
o a | and siblings
c Z. |to each ather
2 c
ui] =
= 4
L]
lastChild Elermeant:
<hody=

XPath—Basic syntax iv

- In other words, XPath cares about:
- The type of element and its attributes (just like CSS selectors)
- The ancestor/descendant relationship between elements (in a
more refined way than CSS selectors)
- The child order within a generation (this is new!)
- With all of this, we can create very specific search strings in a
way CSS selectors simply can't.

XPath—Basic syntax v

- Going back to our XPath example:
//div[@id="mw-content-text”]/div[1]/table[4]

- div[@id="mw-content-text”] matches a div with a
specific id.

- div[1] matches the first div child of the previous element.

- table[4] matches the fourth table child of the previous
element.

- The starting // means this match could occur anywhere in the
HTML document.

"

Exercise

On https://www.r-project.org/mail.htmtl, you can find a
list of Special Interest Group mailing lists. Create an XPath that will
match all a elements from this list, and no other ones.

Hint: Open up the developer tools, start from /html/body and go
from there.

https://www.r-project.org/mail.html

library(rvest)

url <- "https://www.r-project.org/mail.html”
path <- "/html/body/div/div[1]/div[2]/ul[1]/1i/p/a"

mail <- read_html(url) %>%
html_elements(xpath = path)

library(tidyverse)

data.frame(

name = html_text(mail),

URL = html_attr(mail, "href”)
) %>% glimpse

Rows: 20

Columns: 2

$ name <chr> "R-SIG-Mac”, "R-SIG-DB”,
"R-SIG-Debian”, "R-SIG-dynamic-models”, ~

14

$ URL <chr>
"https://stat.ethz.ch/mailman/listinfo/r-sig-mac”,
"https://stat.~

‘IIHHIHHHHIIHIII

Equivalently: once we reach ul[1]
we want all a elements
path2 <- ”/html/body/div/div[1]/div[2]/ul[1]//a"

mail2 <- read_html(url) %>%
html_elements(xpath = path)

Are they the same?
all.equal(mail, mail2)

[1] TRUE

Expression

Description

)

\\

Extract an attribute

Refers to current node

Refers to (direct) parent node
Refers to direct or indirect children

- On https://coinmarketcap.com/all/views/all/,
there is a table with information about crypto-currencies.

- Let’s extract this data and find the top 5 crypto-currencies
with respect to their price (in USD).

- We can see our table of interest is inside a div of class
cmc-table__table-wrapper-outer

https://coinmarketcap.com/all/views/all/

library(tidyverse)

url <- "https://coinmarketcap.com/all/views/all/"”

path <- paste0('//div[@class="cmc-table__"',
"table-wrapper-outer”]/div/table')

data <- read_html(url) %>%
html_element(xpath = path) %>%
html_table()

glimpse(data)

19

Rows: 200

Columns: 11

$ Rank <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15~

$ Name <chr> "Bitcoin”, "Ethereum”, "Binance
Coin”, "Tether”, ~

$ Symbol <chr> "BTC”, "ETH”, "BNB”, "USDT”,
"ADA”, "DOT”, "XRP",~

$ “Market Cap” <chr> "$1,072,271,071,091",
"$209,184,934,190", "$42,17~

$ Price <chr> "$57,438.84", "$1,815.00",
7$272.92", "$0.9996", ~

20

IIHHHHHHHHIHIII

$ “Circulating Supply ™ <chr> "18,668,050 BTC”,
”115,253,326 ETH”, "154,532,785~

$ “Volume(24h)™ <chr> "$56,767,684,476",
"$22,431,621,017", "$2,062,433~

$ "% 1h~ <chr> "-0.68%", "-0.84%", "-0.42%",
"0.01%", "-0.55%", ~

$ "% 24h° <chr> "4.04%", "8.33%", "3.14%",
"_0.15%", "2.29%", "7.~

$ "% 7d° <chr> "2.30%", "3.68%", "1.67%",
"-0.39%", "4.13%", "-7~

$ °° <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, N~

21

IIEHHHiHHiII

Clean up Price so we can order it
NOTE: there's a column name missing
which can cause some weird errors
library(stringr)
data %>%
select(Name, Symbol, Price) %>%
mutate(Price = str_replace_all(Price, "\\$I|,”, "),
Price = as.numeric(Price)) %>%
top_n(5, Price)

22

IIEH%HHHHiIHiII

#t#t # A tibble: 5 x 3

Name Symbol Price
<chr> <chr> <dbl>
1 Bitcoin BTC 57439.
2 Wrapped Bitcoin WBTC 57426.
3 Bitcoin BEP2 BTCB 57813.
4 yearn.finance YFI 35399.
5 renBTC RENBTC 57221.

23

Exercise

On https:
//en.wikipedia.org/wiki/List_of_cognitive_biases,
you can find multiple tables about cognitive biases. Focusing on
social biases, extract the link to the different biases (i.e. from the
first column). Be careful not to extract the other links (you should
have 42 links).

Bonus: Using these links, extract the list of references for each
social cognitive bias.

2%

https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://en.wikipedia.org/wiki/List_of_cognitive_biases

- First, we observe that our table of interest is the second
table inside a div: //div/table[2]

- Next, we see that inside the table, each bias is organized into
a row (tr), and that within a row, we want to focus on the first
entry (td[1]). The a element we want is there, which gives us
tr/td[1]/a.

- This second piece is an indirect child of the first piece, so we
have our path: //div/table[2]//tr/td[1]/a

25

url <- paste0(”https://en.wikipedia.org/wiki/",
"List_of_cognitive_biases”)
path <- "//div/table[2]//tr/td[1]/a”

list_links <- read_html(url) %>%
html_elements(xpath = path) %>%
html_attr(”href”)

str(list_links)

26

chr [1:42] "/wiki/Actor-observer_bias”

"/wiki/Authority_bias”

- For the references, note that they are stored in an ordered list
(ol) of class references, and each citation is inside a
special cite element.

- The XPath we need is

//ol[@class="references”]//cite

27

‘IIHHIHHHiiIHIII

It's a good idea to test before looping
path_ref <- '//ollaclass="references”]//cite’

paste0(”https://en.wikipedia.org/”,
list_links[1]) %>%
read_html() %>%
html_elements(xpath = path_ref) %>%
html_text() %>%
str()

28

‘IIiHIHHHHHI|II

chr [1:21] "Miller, Dale; Normal, Stephen
(1975). \"Actor-observer differences in
perceptions of effective control\”. Journ”|
__truncated__ ...

29

‘IIHHIHHiHiIiiII

Write a function
extract_refs <- function(url) {
paste0(”https://en.wikipedia.org/”,
url) %>%
read_html() %>%
html_elements(xpath = path_ref) %>%
html_text()

30

‘IIiHIHHHHHI|HiII

Double check
extract_refs(list_links[1]) %>%

str

chr [1:21] "Miller, Dale; Normal, Stephen
(1975). \"Actor-observer differences in
perceptions of effective control\”. Journ”|
__truncated__ ...

31

‘IIiHIHHHHHI|HIiIII

Loop over all links----
library(purrr)

full_refs <- map(list_links,
extract_refs)

full_refs is a list
length(full_refs)

##t [1] 42

32

- XPath gives us more flexibility than CSS selectors by focusing
on the relationship between elements.

- Some developer tools can give you an XPath for a specific
element—look up online for more details!

- XPath is a lot more complex than we have time to discuss.

- In fact, XPath is a Turing-complete (query) language.

138

