Sentiment Analysis

Max Turgeon

SCI 2000~Introduction to Data Science

Lecture Objectives

- Explain the pros and cons of the bag-of-words model
- Compare texts using sentiment analysis and TF-IDF

- Last lecture, we discussed regular expressions.
- They're a way to manipulate text data:

- Filter according to the presence of a pattern.

- Replace a certain pattern.

- Split a string into smaller components according to a pattern.
- Today we are looking at sentiment analysis which is a way to

analyze text data.

Bag-of-words model i

- Let's assume we have a collection of strings.
- E.g. a series of tweets, chapters from a book, articles on

Canadian politics.

- We need a way to represent these strings so we can make
comparisons.
- E.g is this article fake news? Is this email spam? Are these
two tweet about the same topic?
- Avery common representation is the bag-of-words model.
- Every string is represented as an (unordered) set of its words.
- No punctuation

- Ignoring grammar and word order

Bag-of-words model ii

- For example, let's consider the following sentence:
- The Queen saluted the work of front line
workers across the Commonwealth.
- It's bag-of-words representation is:

- "The”, "Queen”, "saluted”, "the”, "work”,
"of"”, "front”, "line”, "workers”, "across”,
"the”, "Commonwealth”

- In particular, we keep repetitions.

library(stringr)
string <- "The Queen saluted the work of front

line workers across the Commonwealth.”

bag_words <- str_split(string,
"\\S+")

bag_words

[[1]]
##t [1] "The” "Queen” "saluted” "the”
##t [5] "work” "of” "front” "line”

” ”n

[9] "workers” "across” "the” "Commonwealth.”
Remove the final period
Recall: bag_words is a list
str_replace(bag_words[[1]],
"\\.$7,
")

[1] "The” "Queen” "saluted” "the” "work”
##t [6] "of” "front” "line” "workers” "across”
[11] "the” "Commonwealth”

If we had more than one string
we could use map from the purrr package
library(purrr)
bag_words %>%
map(~str_replace_all(.x, "\\.$", "))

IIHHHHHHHHIHIII

[[1]]

[1] "The” "Queen” "saluted” "the” "work”
[6] "of” "front” "line” "workers” "across”
[11] "the” "Commonwealth”

Exercise

Turn the following tweet into its bag-of-words representation:

We've launched the #5030Challenge to make workplaces
across the country more diverse and inclusive - because
when that happens, we all benefit.

Can you also remove the hashtag? (Hint: look at the function
str_subset.)

string <- "We’'ve launched the #5030Challenge
to make workplaces across the country
more diverse and inclusive - because

when that happens, we all benefit.”
bag_words <- str_split(string,

"\\s+")

bag_words

"

[[1]]
[1] "we’ve” "launched” "the” "#5030Challenge”

” ”

[5] "to” "make” "workplaces” "across”
[9] "the” "country” "more” "diverse”
[13] "and” "inclusive” "-" "because”
[17] "when” "that” "happens,” "we”

[21] "all” "benefit.”

Remove the final period and the comma
str_replace(bag_words[[1]],
"(\\.1,)$",
")

[1] "we'’ve” "launched” "the” "#5030Challenge”

” ”n

[5] "to” "make” "workplaces” "across”
[9] "the” "country” "more” "diverse”
[13] "and” "inclusive” "-" "because”
[17] "when” "that” "happens” "we”

[21] "all” "benefit”

‘IIHHIHHHHIIHIII

Remove the final period and the comma
also remove hyphen and hashtag
str_replace(bag_words[[1]],
"(\\.1,)%$",
") %>%
str_subset(nom, TRUE) %>%
str_subset("R, TRUE)

14

‘IIiHIHHHHHI|II

##t [1] "we’ve” "launched” "the” "to” "make”

n n

[6] "workplaces” "across” "the” "country”
"more”

[11] "diverse” "and” "inclusive” "because”
"when”

[16] "that” "happens” "we” "all” "benefit”

Can you find advantages and disadvantages of the bag-of-words
model?

Answer

- Advantages
- Simplifies comparison
- Easy to understand

- Disadvantages

- Ignores relationship between words
- May distort meaning (i.e. like and not like)

Tokenization and stop-words i

- More generally, the process of splitting a string into smaller
components is called tokenization.

- Therefore, the words are sometimes called tokens.

- Some tokens do not provide much information about a string
or text because they don't carry much meaning, or they are
too common.

- E.g the, and, or, etc.

- These tokens are called stop-words, and they are often
removed from bags-of-words.

- The dataset stop_words in the tidytext package contains
a lexicon of stop-words.

Tokenization and stop-words ii

library(tidytext)
head(stop_words, 5)

A tibble: 5 x 2
word Tlexicon
#it <chr> <chr>

Hit a SMART

Hit a's SMART

H#it able SMART

#Hit about SMART

#Hit above SMART

a &~ W N -

19

Tokenization and stop-words iii

- If we store our bag-of-words into a data. frame, then we can
use an anti-join to remove stop-words.

20

Previous example

bag_words <- str_replace(bag _words[[1]],

"(\\.1,)$",
") %>%
str_subset(nom, TRUE) %>%
str_subset(AT TRUE)
library(tidyverse)
dataset <- data.frame(bag_words)

dataset %>%
anti_join(stop_words, "word”)

21

#Hit word
#it 1 We've
#t 2 launched
3 workplaces
H#t 4 country
5 diverse
6 dinclusive
#Ht 7 benefit

22

Using tidytext i

Store strings in a data.frame

and give them an id number

dataset <- data.frame(id = c(1, 2),
string = c(

"The Queen saluted the work of front
line workers across the Commonwealth.”,
"We’ve launched the #5030Challenge
to make workplaces across the country
more diverse and inclusive - because
when that happens, we all benefit.”)

)

23

Using tidytext ii

dataset %>%
unnest_tokens("word”,
"string”) %>%
glimpse

Rows: 33

Columns: 2

$ id <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2o 2y Bp By 2y 2p Bp By By Bp=

$ word <chr> "the”, "queen”, "saluted”, "the”,

"work”, "of", "front”, "line"”, ~

24

Using tidytext iii

data_clean <- dataset %>%
unnest_tokens("word”,
"string”) %>%
anti_join(stop_words)
glimpse(data_clean)

Rows: 14

Columns: 2

##t $ id <dbl> 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 2

$ word <chr> "queen”, "saluted”, "front”,

”n
~

"line"”, "workers”, "commonwealth”,

25

Sentiment analysis

- Sentiment analysis is a popular way of analyzing and
comparing bag-of-words.

- The idea is to build a lexicon and attach a sentiment, or a
sentiment value, to each word in the lexicon.

- We can then compute the most common sentiment, or
average sentiment value, for a particular text.

- Fortunately, there are many lexica we can readily use!

26

We will use the Bing lexicon
head(get_sentiments(”bing”), 5)

#t#t # A tibble: 5 x 2

word sentiment
<chr> <chr>

1 2-faces negative
2 abnormal negative
3 abolish negative
4 abominable negative
5 abominably negative

27

Why are we using an inner join?
data_clean %>%
inner_join(get_sentiments(”bing”),
"word”) %>%

count(id, sentiment)

Ht id sentiment n
1 2 positive 1

There was only one word in both strings
that appeared in the Bing lexicon...

28

We will analyse a larger corpus

Anne of Green Gables

We can download it from the project Gutenberg
gutenberg_id = 45 is the book we want
library(gutenbergr)

full_text <- gutenberg_download(45)
glimpse(full_text)

29

Rows: 10,779

Columns: 2

$ gutenberg_id <int> 45, 45, 45, 45, 45, 45,
45, 45, 45, 45, 45, 45, 45, 45, 4~

$ text <chr> "ANNE OF GREEN GABLES”, "”, "By

nn
~

Lucy Maud Montgomery”,

ID each line, tokenize, and clean
data_clean <- full_text %>%
mutate(row_number()) %>%
unnest_tokens(word, text) %>%

anti_join(stop_words, "word”)

30

Visualize most common words
data_clean %>%
count(word, TRUE) %>%
top_n(20) %>%
ggplot(aes(n, reorder(word, n))) +
geom_col()

31

reorder(word, n)

anne-
marilla~
diana-
matthew -
time =
girl-
school-
miss =
home -
white -
eyes-
lynde -
green-
night=
barry -
hair-
told =
gilbert-
anne's =
girls -

feel -

32

IIEHHHiHHiII

Sentiment analysis----
data_sentiment <- data_clean %>%
inner_join(get_sentiments(”bing”),
"word”) %>%
count(sentiment, word, TRUE)
We lost a lot of words...
c(nrow(data_clean), nrow(data_sentiment))

[1] 34186 1427

138

IIEH%HHHHiIHiII

Let's look at a few rows
head(data_sentiment)

A tibble: 6 x 3

sentiment word n
<chr> <chr> <int>
1 negative miss 148
2 positive pretty 89
3 positive glad 74
4 positive Tlove 70
5 positive Tlovely 64
6 positive nice 64

34

IIEH%iiHHHiIHIiIII

data_sentiment %>%
group_by(sentiment) %>%
top_n(10) %>%
ggplot(aes(n, reorder(word, n),
sentiment)) +
geom_col() +
facet_wrap(~ sentiment, "free”)

35

reorder(word, n)

negative

miss -

hard -

dark-

g
<

g
g

afraid -

cold -

mistake -

wild -

wicked -

dreadful -

100

04
&

=d
&

positive

pretty -
glad-
love -
nice -

lovely - sentiment

I negative
B posicve

splendid -

beautiful -

perfectly -

sweet-

bright-

04
»
g-
3

36

Exercise

Repeat the analysis for The Wonderful Wizard of Oz
(gutenberg_id = 55). What are the most common positive and
negative words?

37

Download full text,

ID each line, tokenize, and clean

data_clean <- gutenberg_download(55) %>%
mutate(row_number()) %>%
unnest_tokens(word, text) %>%
anti_join(stop_words, "word”)

38

Sentiment analysis----
data_sentiment <- data_clean %>%
inner_join(get_sentiments(”bing”),
"word”) %>%

count(sentiment, word, TRUE)

39

data_sentiment %>%
group_by(sentiment) %>%
top_n(10) %>%
ggplot(aes(n, reorder(word, n),
sentiment)) +
geom_col() +
facet_wrap(~ sentiment, "free”)

40

Solution

negative

wicked -

terrible -

afraid -

fell-

cowardly -

hurt-

reorder(word, n)

od
N
3
IS
&

hard -

strange -

killed -

lost-

2
3

positive

beautiful -
golden -
pretty -
courage -

wonderful -

sentiment

I negative
B posicve

fast -

lovely -

glad -

top-

sharp-

happy -

0 10 20 30

41

TF-IDF

- Sentiment analysis is not the only way to turn words into
numbers/values.

- TF-IDF is another approach:

- Term Frequency: How many times a word appears in a
document

- Inverse Document Frequency: Negative log of fraction of
documents containing a certain word.

- Taking the product of these two quantities, TF-IDF allows us to
measure the important of a particular word within a collection
of documents.

- In particular, we don't need to remove stop-words; they'll have
IDF = 0

42

library(tidytext)
dataset <- data.frame(id = c(1, 2),
string = c(

"The Queen saluted the work of front
line workers across the Commonwealth.”,
"We've launched the #5030Challenge
to make workplaces across the country
more diverse and inclusive - because
when that happens, we all benefit.”)

)

43

data_tfidf <- dataset %>%
unnest_tokens("word”,
"string”) %>%
count(id, word) %>%
bind_tf_idf(word,
id,
n)

head(data_tfidf, 5)

44

#H id word n tf idf tf_idf
#t 1 1 across 1 0.083 0.00 0.000
2 1 commonwealth 1 0.083 0.69 0.058
3 1 front 1 0.083 0.69 0.058
#t 4 1 line 1 0.083 0.69 0.058
5 1 of 1 0.083 0.69 0.058

45

IIHHHHHHHHIHIII

data_tfidf %>%
ggplot(aes(tf_idf,
reorder(word, tf_idf),
id)) +
geom_col(FALSE) +
facet_wrap(~id, "free”)

46

Example v

1 2
workplaces -
workers -
when -
we...ve -
work-
we
to-
saluted -
that-
more-
queen-
make -
5 launched -
= of -
b] nclusive -
s
2
< happens -
3 line =
2 diverse -
2
country -
front-
benefit-
because -
commonwealth -
and-
all-
the-
5030challenge -
the-
across -
across -
0.00 0.02 0.04 0.06 0.00 001 002 003
tf_idf

47

Exercise

Repeat the analysis with the first three novels from the Anne of
Green Gables series. What are the top words for each novel,
according to TF-IDF? You can start with the code below.

library(tidytext)

library(gutenbergr)

anne_novels <- gutenberg_download(c(45, 47, 51),
"title"”)

48

anne_novels <- gutenberg_download(c(45, 47, 51),
"title”

anne_novels

A tibble: 29,389 x 3

gutenberg_id text title

<int> <chr> <chr>

1 45 "ANNE OF GREEN GABLES” Anne of Green Ga~
2 45 "" Anne of Green Ga~

3 45 "By Lucy Maud Montgomery” Anne of Green
Ga~

49

H
Hi
Hi
i
i
H

0 N o &

9

45
45
45
45
45
45

"" Anne of Green Ga~

"" Anne of Green Ga~

"" Anne of Green Ga~

"Table of Contents” Anne of Green Ga~

"" Anne of Green Ga~

" CHAPTER I Mrs. Rachel Lynde Is~ Anne of

Green Ga~

10 45 " CHAPTER II Matthew Cuthbert Is ~ Anne
of Green Ga~

HH # ..

. with 29,379 more rows

50

data_tfidf <- anne_novels %>%
unnest_tokens(word, text) %>%
count(title, word) %>%
bind_tf_idf(word, title, n)

51

‘IIHHIHHHHIIHIII

Visualize top 10

data_tfidf %>%
group_by(title) %>%
top_n(10, tf_idf) %>%
ggplot(aes(tf_idf,

reorder(word, tf_idf),
title)) +

geom_col(FALSE) +
facet_wrap(~title, "free”)

52

Solution v

Anne of Avonlea Anne of Green Gables Anne of the Island
e - 1 - = -
brooch -
lavendar - jamesina-
paul- davy-
g phillips - l
|
5 grandma - patty’s -
2
s i
2 ice
g charlotta - oy
anthony - douglas -
avery-
dora~ kingsport -
katie =
“1 - o I o] .
P - el I 1 .
0600 3e-04 6e-04 9e-04 0e+00 5e-04 1e-03 00000 0.0005 00010 0.0015 0.0020 0.002
tf_idf

58]

- We defined at the bag-of-words model for text data.
- We looked at two different analytic approaches:
- Sentiment analysis
- TF-IDF
- TF-IDF can be used to build document-term matrices.

- These matrices are inputs for topic modeling and semantic

analysis.
- Another common data manipulation is lemmatization: turn
inflected words into a common representative.

- Eg liked, likes, and likeable would be represented by
like.

54

- Instead of bag-of-words, we can use N-grams: tokens are
pairs/triples/tuples of consecutive words.
- Finally, a new branch of text analysis uses neural networks to
construct predictive models for text.
- E.g. Predictive text on your phone
- As you can see, there is a lot to explore, and | hope this
lecture was enough to capture your interest!

55

