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Lecture Objectives

• Use the Central Limit Theorem to construct confidence
intervals for means

• Manipulate data using tidyverse functions
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Motivation

• It’s one of the great paradoxes of statistics:
• To better understand data, summarise it.

• The mean/average occupies a special place, because of its
nice properties.

• But looking at multiple summaries gives us a fuller picture.
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Mean

• Recall the definition: if we have n observations X1, . . . , Xn,
their mean (or average) is their sum divided by n:

X̄ = 1
n

n∑
i=1

Xi.

• The mean is a measure of central tendency, i.e. where the bulk
of the observations tend to fall.

• In R, we can compute the mean using the function mean.
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Examples i

• We’ll use the dataset mtcars, which comes with R by default.
• Datasets are usually stored in data.frames.

• We can inspect data.frames using str or head/tail.

str(mtcars)

## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3
24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
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Examples ii

## $ hp : num 110 110 93 110 175 105 245 62 95
123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21
3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
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Examples iii

• There are many ways to compute the average miles per gallon
(mpg) for this dataset. I will demonstrate two ways.

• Extract column
• Use summarise

# Extract column with $ and use mean function
mean(mtcars$mpg)

## [1] 20.09062
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Examples iv

# Use summarise
library(tidyverse)
summarise(mtcars, mean(mpg))

## mean(mpg)
## 1 20.09062

• In the second approach, we use the function summarise. The
first argument is the data.frame; the second argument is
the summary statistic we want to compute. One advantage is
that we can compute many summaries in one function call.
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Examples v

# Both mean and standard deviation
summarise(mtcars, mean(mpg), sd(mpg))

## mean(mpg) sd(mpg)
## 1 20.09062 6.026948

# Average mpg and average qsec
summarise(mtcars, mean(mpg), mean(qsec))

## mean(mpg) mean(qsec)
## 1 20.09062 17.84875
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Central Limit Theorem i

• The sample mean gives us some idea about the population
mean.

• “What if we could measure the height of all Canadians, instead
of a sample?”

• But how certain can we be that the mean of our data is close
to the true population mean?

• The Central Limit Theorem tells us that, whatever the
distribution of the data, its sample mean behaves like a
normal random variable.
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Central Limit Theorem ii

• More precisely, if we have n independent observations that
come from a distribution with mean µ and variance σ2, then
the sample mean is approximately normal:

X̄ ≈ N(µ, σ2/n).

• The most important consequence: we can construct
confidence intervals for the population mean.

• For 95% CI: X̄ ± 1.96σ̂/
√

n, where σ̂ is the standard
deviation of the data (use the function sd).
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Central Limit Theorem iii

• Important observations:

• As we collect more data, the standard deviation of the data
can go up or down. On the other hand, the confidence interval
will become narrower and narrower.

• In practice, we don’t really know if our data is independent, or
if it all comes from the same distribution. This uncertainty has
to be reflected in the strength of our conclusions about the
data.
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Examples i

# Recall
summarise(mtcars, mean(mpg), sd(mpg))

## mean(mpg) sd(mpg)
## 1 20.09062 6.026948

# 95% Confidence interval
c(20.09062 - 1.96*6.026948/sqrt(32),
20.09062 + 1.96*6.026948/sqrt(32))

## [1] 18.00239 22.17885
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Examples ii

# Alternative: save values in variables
# and use variables
mean_mpg <- mean(mtcars$mpg)
sd_mpg <- sd(mtcars$mpg)
n <- nrow(mtcars)

c(mean_mpg - 1.96*sd_mpg/sqrt(n),
mean_mpg + 1.96*sd_mpg/sqrt(n))

## [1] 18.00239 22.17886
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Exercise

Compute the average and standard deviation for qsec, which is the
quarter-mile time (i.e. the time it takes the car to travel a quarter

mile starting from a standstill).

Compute a 95% confidence interval for the average quarter-mile
time.
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Solution

mean_qsec <- mean(mtcars$qsec)
sd_qsec <- sd(mtcars$qsec)
n <- nrow(mtcars)
mean_qsec

## [1] 17.84875

sd_qsec

## [1] 1.786943

c(mean_qsec - 1.96*sd_qsec/sqrt(n),
mean_qsec + 1.96*sd_qsec/sqrt(n))

## [1] 17.22961 18.46789 16



Transforming your data

• Sometimes, you want to look at a subset of the data. Or
perhaps you want to compute the mean of another variable,
not defined in your dataset.

• In other words, we need to transform the data first!

• All tidyverse functions take a data.frame as the first
argument.

• A data.frame is a collection of vectors, all of the same
length, but could be of different types.

• This is the main way of organizing data in R.
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Main tidyverse functions i

• mutate: Create a new variable as a function of the other
variables

# Switch to litres per 100km
mutate(mtcars, litres_per_100km = 235.215/mpg)

• filter: Keep only rows for which some condition is TRUE

# Only keep rows where cyl is equal to 6 or 8
filter(mtcars, cyl %in% c(6, 8))
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Examples i

• Let’s say we want to compute a 95% confidence interval for
litres per 100km.

data1 <- mutate(mtcars, litres_per_100km = 235.215/mpg)
data2 <- summarise(data1,

avg_lit = mean(litres_per_100km),
sd_lit = sd(litres_per_100km))

data2

## avg_lit sd_lit
## 1 12.75506 3.863251
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Examples ii

data3 <- mutate(data2,
low_bd = avg_lit - 1.96*sd_lit/sqrt(n),
up_bd = avg_lit + 1.96*sd_lit/sqrt(n))

data3

## avg_lit sd_lit low_bd up_bd
## 1 12.75506 3.863251 11.41651 14.09361
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Pipe operator

• One of the important features of the tidyverse is the pipe
operator %>%

• It takes the output of a function (or of an expression) and
uses it as input for the next function (or expression)
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library(tidyverse)

count(mtcars, cyl)

## cyl n
## 1 4 11
## 2 6 7
## 3 8 14

# Or with the pipe
# mtcars becomes the first argument of count
mtcars %>% count(cyl)
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Pipe operator

• In more complex examples, with multiple function calls, the
pipe operator improves readability.

# Without pipe operator
fit_model(prepare_data(dataset))
# With pipe operator
dataset %>%
prepare_data %>%
fit_model
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Examples i

# Let's convert our previous example to use the pipe
mtcars %>%

mutate(litres_per_100km = 235.215/mpg) %>%
summarise(avg_lit = mean(litres_per_100km),

sd_lit = sd(litres_per_100km)) %>%
mutate(low_bd = avg_lit - 1.96*sd_lit/sqrt(n),

up_bd = avg_lit + 1.96*sd_lit/sqrt(n))

## avg_lit sd_lit low_bd up_bd
## 1 12.75506 3.863251 11.41651 14.09361
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Examples ii

• We didn’t need intermediate datasets data1, data2 and
data3.

• It’s easier to read.
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Summaries by group

• We can combine summarise and group_by to create
summaries for each group individually.

# Average mpg for each value of cyl
mtcars %>%

group_by(cyl) %>%
summarise(avg_mpg = mean(mpg))

## # A tibble: 3 x 2
## cyl avg_mpg
## * <dbl> <dbl>
## 1 4 26.7
## 2 6 19.7
## 3 8 15.1 26



Examples i

# Average mpg for each value of cyl + 95% CI
mtcars %>%

group_by(cyl) %>%
summarise(avg_mpg = mean(mpg),

sd_mpg = sd(mpg),
n = n()) %>%

mutate(low_bd = avg_mpg - 1.96*sd_mpg/sqrt(n),
up_bd = avg_mpg + 1.96*sd_mpg/sqrt(n))
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Examples ii

## # A tibble: 3 x 6
## cyl avg_mpg sd_mpg n low_bd up_bd
## * <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 4 26.7 4.51 11 24.0 29.3
## 2 6 19.7 1.45 7 18.7 20.8
## 3 8 15.1 2.56 14 13.8 16.4

• Very important: The number of observations in each group is
different!

• This is why we computed the number of observations in each
group using the function n().
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Examples iii

• When we compute the confidence interval, the variable n
refers to the column n in the dataset, i.e. what we computed
using summarise.

• Here, the “word” n refers to three different things:
• A function, n(), which counts the number of observations.
• A column in the dataset that we created using the function
n().

• The number of rows of mtcars that we computed earlier.

• R keeps track of all of these (using something called “scoping
rules”), but for a human this can be confusing… It’s best to
avoid it if we can.
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Examples iv

# Average mpg for each value of cyl + 95% CI
mtcars %>%

group_by(cyl) %>%
summarise(avg_mpg = mean(mpg),

sd_mpg = sd(mpg),
nobs = n()) %>%

mutate(low_bd = avg_mpg - 1.96*sd_mpg/sqrt(nobs),
up_bd = avg_mpg + 1.96*sd_mpg/sqrt(nobs))

30



Proportions are means too!

• It may not be obvious at first, but proportions are means!
• If I want the proportion of apples among fruits, I can take the
mean of binary observations:

• Xi = 1 if the i-th fruit is an apple.
• Xi = 0 otherwise.

• This means we can use the CLT for proportions too.
• Note: It doesn’t work well when the proportion p̂ and the
number of observations n are small.
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Examples i

summarise(mtcars, prop = mean(cyl == 6))

## prop
## 1 0.21875

• Note: If p̂ is the proportion, then σ̂ =
√

p̂(1 − p̂).
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Examples ii

n <- nrow(mtcars)
mtcars %>%

summarise(prop = mean(cyl == 6)) %>%
mutate(sigma = sqrt(prop*(1 - prop)),

low_bd = prop - 1.96*sigma/sqrt(n),
up_bd = prop + 1.96*sigma/sqrt(n))

## prop sigma low_bd up_bd
## 1 0.21875 0.4133986 0.07551468 0.3619853
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Examples iii

# For all values of cyl
mtcars %>%

group_by(cyl) %>%
summarise(nobs = n(), prop = nobs/n) %>%
mutate(sigma = sqrt(prop*(1 - prop)),

low_bd = prop - 1.96*sigma/sqrt(n),
up_bd = prop + 1.96*sigma/sqrt(n))
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Examples iv

## # A tibble: 3 x 6
## cyl nobs prop sigma low_bd up_bd
## * <dbl> <int> <dbl> <dbl> <dbl> <dbl>
## 1 4 11 0.344 0.475 0.179 0.508
## 2 6 7 0.219 0.413 0.0755 0.362
## 3 8 14 0.438 0.496 0.266 0.609
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