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Lecture Objectives

• Identify the main types of data visualization
• Contrast their strengths and weaknesses
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Motivation

• Summary statistics are useful in doing quick comparisons.
• Or even statistical inference

• Data visualizations are an effective way of sharing a lot of
information about a dataset.

• In this lecture, we’ll focus on the main types of data
visualizations; in the next lecture, we’ll discuss important
principles for effective visualization.
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Main principles

Why would we want to visualize data?

• Quality control
• Identify outliers
• Find patterns of interest (EDA)
• Communicate results
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Histogram i

• A histogram represents the frequency of observations
occurring in certain bins.

• Most software will choose default bins, but you can always
change them.

• It is useful for displaying continuous data, and comparing its
distribution across subgroups.

library(tidyverse)
library(dslabs)

dim(olive)
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Histogram ii

## [1] 572 10

# Create histogram for oleic acid
ggplot(olive,

aes(x = oleic)) +
geom_histogram()

6



Histogram iii
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Histogram iv

# Look at distribution by region
ggplot(olive,

aes(x = oleic, fill = region)) +
geom_histogram()
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Histogram v
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Histogram vi

# Dodge instead of stack
ggplot(olive,

aes(x = oleic, fill = region)) +
geom_histogram(position = ”dodge”)
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Histogram vii
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Histogram viii

# Or with facets
ggplot(olive,

aes(x = oleic)) +
geom_histogram() +
facet_grid(. ~ region)
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Histogram ix
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Histogram–Summary

• Histograms help visualize the distribution of a single variable.
• It bins data and displays the counts in each bin
• But large bins can hide important features, while small bins
can create artifacts.

• ggplot takes a data.frame as input and maps variables to
different features of the graph.

• oleic is mapped to the x-axis
• region is mapped to the fill colour.
• Important: This mapping happens inside the function aes.

• ggplot automatically takes care of choosing the colour,
drawing the limits, and printing a legend.

• facet_grid can be used to display multiple plots together,
one per value of the variable.
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A more complex histogram i

# Create a copy of the data to serve as background
olive_bg <- select(olive, -region)
ggplot(olive, aes(x = oleic)) +
# Start with grey background
geom_histogram(data = olive_bg,

fill = 'grey') +
# Add colour on top
geom_histogram(aes(fill = region)) +
facet_grid(. ~ region) +
# Move legend to top
theme(legend.position = 'top')
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A more complex histogram ii
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Exercise

Use the dataset nba_players_19 from the package openintro
to plot a histogram of the heights of basketball players.

Next, use histograms to compare the height distribution of guards
vs centers.
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Solution i

• First, we plot the overall histogram.

library(tidyverse)
library(openintro)

ggplot(nba_players_19, aes(height)) +
geom_histogram()
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Solution ii
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Solution iii

• Next, we need to figure out which variable encodes the
position of each player.

• You can look at the help page ?nba_players_19.
• You can look at str(nba_players_19).

• Then we can filter using position.

nba_players_19 %>%
filter(position %in% c(”Center”, ”Guard”)) %>%
ggplot(aes(height)) +
geom_histogram() +
facet_grid(~position)
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Solution iv
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Density plot i

• Density plots can be thought of as smoothed histograms.
• Their mathematical definition is much more involved and
beyond the scope of this course.

• They can be used interchangeably with histograms.

ggplot(olive, aes(x = oleic)) +
geom_density()

22



Density plot ii
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Density plot iii

# Split by region
ggplot(olive, aes(x = oleic,

fill = region)) +
geom_density()
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Density plot iv
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Density plot v

# Add transparency
ggplot(olive, aes(x = oleic,

fill = region)) +
geom_density(alpha = 0.5)
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Density plot vi
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Density plot vii

# Alternative: stacked density plots
ggplot(olive, aes(x = oleic,

fill = region)) +
geom_density(position = ”stack”)
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Density plot viii
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Density plot–Summary

• Density plots can be thought of as smoothed histograms.
• There is a parameter controlling the level of smoothness: too
large and it will hide important features; too small and it may
create artifacts.

• We used a different geom to create the plot.
• geom_smooth as opposed to geom_histogram.

• The attribute alpha can be used to control transparency.
• alpha = 0 is completely transparent
• alpha = 1 is completely opaque.
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Boxplot i

• Box plots are a simple way to display important quantiles and
identify outliers

• Components (per Tukey):
• A box delimiting the first and third quartile;
• A line indicating the median;
• Whiskers corresponding to the lowest datum still within 1.5
IQR of the lower quartile, and the highest datum still within 1.5
IQR of the upper quartile;

• Any datum that falls outside the whiskers is considered a
(potential) outlier.
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Boxplot ii

ggplot(olive, aes(x = oleic)) +
geom_boxplot(y = 0) # y = 0 is a dummy value

32



Boxplot iii
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Boxplot iv

# Map region to y-axis
ggplot(olive, aes(x = oleic,

y = region)) +
geom_boxplot()
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Boxplot v
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Boxplot vi

# Add all points on top of boxplots
ggplot(olive, aes(x = oleic,

y = region)) +
geom_boxplot() +
geom_point()
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Boxplot vii
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Boxplot viii

# Add vertical noise to the points to reduce overlap
# Note: need to remove outliers or you will get
# duplicates
ggplot(olive, aes(x = oleic,

y = region)) +
geom_boxplot(outlier.colour = NA) +
geom_jitter(height = 0.25, width = 0)

38



Boxplot ix
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Boxplot x

# Flip boxplots by switching the axes
ggplot(olive, aes(x = region,

y = oleic)) +
geom_boxplot()
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Boxplot xi
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Boxplot–Summary

• Boxplots are a mixture between a data visualization and a
summary statistics.

• It is essentially a graphical depiction of the five-number
summary.

• Widely different datasets can give rise to the same boxplot.
• I recommend to overlay the actual data.
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Exercise

Using the dataset nba_players_19 from the package openintro,
compare the distribution of heights across all positions.
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Solution i

ggplot(nba_players_19, aes(x = position,
y = height)) +

geom_boxplot(outlier.colour = NA) +
geom_jitter(height = 0, width = 0.25)
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Solution ii

70

75

80

85

Center Center−Forward Forward Forward−Center Forward−Guard Guard Guard−Forward
position

he
ig

ht

45



Single-variable viz

• All three data visualizations above focused on a single
continuous variable.

• But you can draw one such visualization for the same variable,
but in different subgroups.

• E.g. GPA for math, biology and psychology majors.

• In this way, they can all be used to investigate the
relationships between one continuous and one categorical
variable.
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Bivariate plots
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Scatter plot i

• The simplest way to represent the relationship between two
continuous variables is a scatter plot.

• Not really suitable with categorical variables.

• Technically still possible with three variables, but typically
more difficult to read.

ggplot(stars, aes(x = magnitude,
y = temp)) +

geom_point()
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Scatter plot ii
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Scatter plot iii

# Add colour for type of stars
ggplot(stars, aes(x = magnitude,

y = temp,
colour = type)) +

geom_point()
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Scatter plot iv
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Exercise

Use the dataset babies_crawl from the package openintro to
plot the average crawling age against the average outdoor
temperature at 6 months.

52



Solution i

• First, we need to figure out the name of the variables we need
to plot.

• You can look at the help page ?babies_crawl.
• You can look at str(babies_crawl).

• Our two variables are temperature and
avg_crawling_age
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Solution ii

library(tidyverse)
library(openintro)

ggplot(babies_crawl, aes(x = temperature,
y = avg_crawling_age)) +

geom_point()
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Solution iii
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Solution iv

• What if we want to restrict the range of temperatures?

# First option
# Restrict the data before plotting
babies_crawl %>%

filter(temperature > 30, temperature < 70) %>%
ggplot(aes(x = temperature,

y = avg_crawling_age)) +
geom_point()
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Solution v
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Solution vi

# Second option
# xlim removes the points from the plot
ggplot(babies_crawl, aes(x = temperature,

y = avg_crawling_age)) +
geom_point() +
xlim(c(30, 70))

## Warning: Removed 2 rows containing missing values (geom_point).
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Solution vii
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Solution viii

# Third option
# coord_cartesian zooms in/out
ggplot(babies_crawl, aes(x = temperature,

y = avg_crawling_age)) +
geom_point() +
coord_cartesian(xlim = c(30, 70))
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Solution ix
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Solution x

ggplot(stars, aes(x = magnitude,
y = temp)) +

geom_density_2d()

# We can add points on top of the contour lines
ggplot(stars, aes(x = magnitude,

y = temp)) +
geom_density_2d() +
geom_point()

# We can colour points by star type
# Note: colour is only defined for geom_point
ggplot(stars, aes(x = magnitude,

y = temp)) +
geom_density_2d() +
geom_point(aes(colour = type))
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Beyond two variables
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Limitations

• Three-dimensional scatter plots are possible, but hard to
interpret.

• Density plots can technically be constructed for any
dimension

• But as the dimension increases, its performance decreases
rapidly

• Solution: We can look at each variable one at a time and at
each pairwise comparison.
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Pairs plot i

• A pairs plot arranges these univariate summaries and
pairwise comparisons along a matrix.

• Each variable corresponds to both a row and a column
• Univariate summaries appear on the diagonal, and pairwise
comparisons off the diagonal.

• Because of symmetry, we often see a different summary of the
comparison above and below the diagonal.
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Pairs plot ii

library(GGally)

# Select three variables
olive_sub <- olive %>%

select(eicosenoic, arachidic, linolenic)

ggpairs(olive_sub)
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Pairs plot iii
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Pairs plot iv

• As we can see, GGally displays the following:
• Scatter plots below the diagonal
• Density plots on the diagonal
• Pearson correlations above the diagonal

• These can all be changed—see the documentation for more
information.
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