Web Scraping

Max Turgeon

SCI 2000~Introduction to Data Science

Lecture Objectives

- Understand the basics of HTTP, URLs, and HTML
- Extract data from HTML documents using CSS selectors

- There's lots of data on the Internet...
- It's estimated that there are over 1 trillion websites around the
world.
- Some information is easy to capture and copy-paste to CSV
file.
- E.g. anicely formatted table on Wikipedia.
- More often, data is spread over multiple pages, and not stored
in nice tables.
- Web scraping is the (automated) process of extracting data
from the web.

Crash course on HTTP i

- HTTP: Hypertext Transfer Protocol
- It's the standard way of communicating over the web.
- But not the only way! Email uses other protocols (e.g. POP,
SMTP, IMAP).
- Pages you read, images you see, videos you watch are sent to
your web browser using HTTP.
- When you want to visit a website, your web browser sends a
request for content to a web server, and the server sends back
a response.

- To see a single page, you typically perform multiple requests.

Crash course on HTTP i

- There are six different types of requests you can make, but we
will focus on only two:

- GET: Client asks for a resource from the server.
- POST: Client also asks for a resource, but sends data at the
same time (e.g. inputs from an HTML form).

- The server will then send back a response:

- Contains a status code (e.g. 404 means resource is
unavailable).

- Contains information about the type of content being sent
over (e.g. images, videos, HTML)

- The actual content we asked for.

Identifying resources i

- The standard way of identifying which resource we want is by
using a Uniform Resource Locator (URL).
- The general syntax is as follows:

scheme://hostname:port/path?querystring#tfragment

- The scheme is typically either HTTP or HTTPS (but could also
be FTP).

- The hostname is the name of the host, e.g. www.ecosia.org
or www.nytimes.com.

Identifying resources ii

- The port is the “door” on the server through which the
communication occurs. The default is 80, and it is usually
omitted.

- The path is the location of the resource, e.g.
2021/03/15/movies/oscars-nominees-list.html.

- The query string is a series of name=value pairs separated
by an ampersand (&)

- https://www.ecosia.org/search?q=web+scraping

- g=web+scraping&freshness=month would further restrict
to results to past month.

Identifying resources iii

- The fragment points to a specific part of the returned output
(usually an HTML file). It doesn’t change what the server
sends, only how the browser displays it.

library(httr)
resource <- GET(”https://www.ecosia.org”)
resource$status_code

[1] 200

http_status(resource)

$category
[1] "Success”

#H
$reason
[1] "oK”
#H

$message
[1] "Success: (200) 0OK”

What did we receive?
resource$headers$ content-type"

IIHHHHHHHi|iiIII
[1] "text/html; charset=utf-8"

content(resource)

{html_document}

<html data-n-head-ssr="" lang="en"”
data-n-head="%7B%221ang%22 :%7B%22ssr%22 :%22en%22%7D%7D""
[1] <head>\n<meta http-equiv="Content-Type”
content="text/html; charset=UTF-8 ...

[2] <body>\n <div data-server-rendered="true”
id="__nuxt”><div id="__layou

"

IIHHHHHHHHIHIII

What about images?

url <- paste@(”https://www.maxturgeon.ca/",
"figure/posts/oscar2019_bestPic.png”)

image <- GET(url)

image$status_code

[1] 200

image$headers$ content-type”

[1] "image/png”

IIEHHHiHHiII

str(content(image))

num [1:350, 1:700, 1:3] 1111111111

Browser developer tools

- Most modern browsers allow you to check what HTTP requests
have been sent using their developer tools.

- Safari requires you to first enable the menu (you can find
instructions online).

- Live demo with https://www.ecosia.org

14

HTML documents

- By far, the most common documents we will scrape for data
are HTML documents.
- HTML: Hypertext Markup Language
- HTML is a language for presenting content on the Web.
- HTML is a special case of XML (Extended Markup Language).
- HTML structures content within tags.
- These tags form a tree-like structure (i.e. tags are embedded
into one another).
- Some elements in the tree are also given attributes to
distinguish them from elements with the same tags.

- Eg class="happy” or id="movie-1

HTML documents—Tree structure

(<html>]

[<head> J (<body>]
{ I am your first }
HTML-file!

[<title>]
| First HTML |

Munzert et al, Automated Data Collection with R

library(tidyverse)
content(resource, as = "text”) %>%
str_extract(”<title>[\\w\\s-]*</title>")

[1] "<title>Ecosia - the search engine that
plants trees</title>"

Most common HTML tags i

- Anchor elements: They are used to link to other
documents/web pages, setting reference points, or linking to
reference points.

Link
with absolute path

- Paragraph tag: Create paragraphs of text

<p>This text is going to be a paragraph one day and
separated from other text by line breaks.</p>

Most common HTML tags ii

- Heading tags: HTML provides 6 levels of headings

<h1l>heading of level 1 -- this will be BIG</h1>
<h2>heading of level 2 -- this will be big</h2>

<h6>heading of level 6 -- the smallest heading</h6>

19

Most common HTML tags iii

- Listing tags: Both ordered (<o1>) and unordered () lists

Dogs</1i>
Cats</1i>
Fish</1i>

20

Most common HTML tags iv

- Dividing tags: Allows to organize sections (or subtrees) of the
HTML document

<div class="happy”>

<p>0One paragraph</p>
</div>

21

Most common HTML tags v

- Table tags: Used to create tables (which usually contain data!)

<table>
<th>Rank</th> <th>Name</th> </tr>

<tr>
<tr>
<tr>
<tr>
<tr>
<tr>

<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>

</table>

<td>Lichtenstein</td> </tr>
<td>Monaco</td> </tr>
<td>Luxembourg</td> </tr>
<td>Norway</td> </tr>
<td>Qatar</td> </tr>

22

List of pharaohs in tables

en.wikipedia.org/wiki/List_of_pharaohs

GET("en.wikipedia.org/wiki/List_of_pharaohs”) %>%
content(as = "text”) %>%
str_extract_all(”<table>")

[[1]1]
character(0)

23

Example Redux i

List of pharaohs in tables

en.wikipedia.org/wiki/List_of_pharaohs

GET(”en.wikipedia.org/wiki/List_of_pharaohs”) %>%
content(as = "text”) %>%
str_extract_all(”<table class=\"wikitable\”.*>") %>%
str()

2%

Example Redux ii

List of 1

$: chr [1:44] "<table class=\"wikitable\”
width=\"100%\">" "<table class=\"wikitable\”

width=\"100%\">" "<table class=\"wikitable\”

width=\"100%\">" "<table class=\"wikitable\”

width=\"100%\">"

25

CSS selectors

- We need a better way to find what we are looking for within an
HTML document.

- Remember: HTML is a text file, but it also has a tree structure.

- Moreover, important HTML elements are often identified using
class or id attributes.

- So that they can be styled using CSS

- We can use this to our advantage to extract the data we want.

26

library(rvest)
read_html(”https://www.ecosia.org”) %>%

html_elements(”title”) %>%
html_text() # Get text from element

[1] "Ecosia - the search engine that plants
trees”

27

Syntax: tag.class

url <- "https://en.wikipedia.org/wiki/List_of_pharaohs”

tables <- read_html(url) %>%
html_elements(”table.wikitable”)

length(tables)

[1] 44

Let's look at first one
tables[[1]]

28

{html_node}

<table class="wikitable” width="100%">
[1] <tbody>\n<tr>\n<th
width="15%">Name\n</th>\n<th
width="15%">Image\n</th>\ ...

html_table(tables[[1]]) %>%
glimpse

29

IIHHHHHHHHIHIII

Rows: 14

Columns: 4

$ Name <chr> "King 01 (missing)”, "Hsekiu /
Seka”, "Khayu”, "Tiu / Teyew”,~

##t $ Image <lgl> NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA

$ Comments <chr> "Only known from the Palermo
stone[7]"”, "Only known from the ~

$ Reign <chr> "Unknown”, "Unknown”, "Unknown”,
"Unknown”, "Unknown”, "Unkno~

30

Exercise

ON CAMPUS

Top 10 highest paid university officials in Canada

Click to see who made more than $1-million last year
By Jacob Serebrin

July 4,201

Here are the Top 10 highest paid university officials in Canada, ranked by their base

salaries.*

1. David Johnson
University of Waterloo president (now Governor General of Canada) — $1,041,881

2. Moriarty William
president of the University of Toronto Asset Management Corp. — $697,020

Using CSS selectors, extract the salaries from

https:
//www.macleans.ca/education/uniandcollege/top-10-
highest-paid-university-officials-in-canada/

Hint: Salaries (and more) are in a div of class

single-article-text.
31

https://www.macleans.ca/education/uniandcollege/top-10-highest-paid-university-officials-in-canada/
https://www.macleans.ca/education/uniandcollege/top-10-highest-paid-university-officials-in-canada/
https://www.macleans.ca/education/uniandcollege/top-10-highest-paid-university-officials-in-canada/

library(rvest)
url <- paste0(”https://www.macleans.ca/education/”,
"uniandcollege/top-10-highest-paid-",
"university-officials-in-canada/")
data <- read_html(url) %>%
html_elements(”div.single-article-text”) %>%
html_elements(”"p”) %>%
html_text()

32

library(tidyverse)
data <- data.frame(text = data)
glimpse(data)

Rows: 14

Columns: 1

$ text <chr> "Here are the Top 10 highest paid
university officials in Canada,~

138

data_clean <- data %>%

filter(str_detect(text, ""“\\d{1,2}\\.”)) %>%

separate(col = "text”, into = c(”name”, "salary”),

sep = "\\n") %>%
mutate(name = str_replace(name,
"N\\d{1,21\\.\\s=*", ""),
salary = str_extract(salary, "\\$[\\d,1+$"))

glimpse(data_clean)

34

‘IIHHIHHHHIIHIII

Rows: 10

Columns: 2

$ name <chr> "David Johnson”, "Moriarty
william”, "Amit Chakma”, "Richard Le~

##t $ salary <chr> "$1,041,881", "$697,020",
"$500,000”, "$496,921", "$480,030", "~

library(knitr)
kable(data_clean)

35

name salary
David Johnson 51,041,881
Moriarty William $697.020
Amit Chakma $500,000
Richard Levin $496,921

Mamdouh Shoukri $480,030
Indira Samarasekera $479,000
Ramona Lumpkin $469,837
Carl G. Amrhein $461,000
Alastair Summerlee $440,590
Dezso). Horvath S432,374

36

-+ HTTP is the main way we ask for content from web servers.
- And most of this content is HTML pages.
- HTML pages contain lots of information, but it can be difficult
to parse.
- (CSS selectors allow us to pick out exactly the pieces we want.
- It's very common to use regular expressions to clean up the
data as it's collected.

37

